24,188 research outputs found

    Modeling Belief in Dynamic Systems, Part II: Revision and Update

    Full text link
    The study of belief change has been an active area in philosophy and AI. In recent years two special cases of belief change, belief revision and belief update, have been studied in detail. In a companion paper (Friedman & Halpern, 1997), we introduce a new framework to model belief change. This framework combines temporal and epistemic modalities with a notion of plausibility, allowing us to examine the change of beliefs over time. In this paper, we show how belief revision and belief update can be captured in our framework. This allows us to compare the assumptions made by each method, and to better understand the principles underlying them. In particular, it shows that Katsuno and Mendelzon's notion of belief update (Katsuno & Mendelzon, 1991a) depends on several strong assumptions that may limit its applicability in artificial intelligence. Finally, our analysis allow us to identify a notion of minimal change that underlies a broad range of belief change operations including revision and update.Comment: See http://www.jair.org/ for other files accompanying this articl

    Belief Revision with Uncertain Inputs in the Possibilistic Setting

    Full text link
    This paper discusses belief revision under uncertain inputs in the framework of possibility theory. Revision can be based on two possible definitions of the conditioning operation, one based on min operator which requires a purely ordinal scale only, and another based on product, for which a richer structure is needed, and which is a particular case of Dempster's rule of conditioning. Besides, revision under uncertain inputs can be understood in two different ways depending on whether the input is viewed, or not, as a constraint to enforce. Moreover, it is shown that M.A. Williams' transmutations, originally defined in the setting of Spohn's functions, can be captured in this framework, as well as Boutilier's natural revision.Comment: Appears in Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (UAI1996

    Towards Closed World Reasoning in Dynamic Open Worlds (Extended Version)

    Full text link
    The need for integration of ontologies with nonmonotonic rules has been gaining importance in a number of areas, such as the Semantic Web. A number of researchers addressed this problem by proposing a unified semantics for hybrid knowledge bases composed of both an ontology (expressed in a fragment of first-order logic) and nonmonotonic rules. These semantics have matured over the years, but only provide solutions for the static case when knowledge does not need to evolve. In this paper we take a first step towards addressing the dynamics of hybrid knowledge bases. We focus on knowledge updates and, considering the state of the art of belief update, ontology update and rule update, we show that current solutions are only partial and difficult to combine. Then we extend the existing work on ABox updates with rules, provide a semantics for such evolving hybrid knowledge bases and study its basic properties. To the best of our knowledge, this is the first time that an update operator is proposed for hybrid knowledge bases.Comment: 40 pages; an extended version of the article published in Theory and Practice of Logic Programming, 10 (4-6): 547 - 564, July. Copyright 2010 Cambridge University Pres
    • …
    corecore