7,318 research outputs found

    A Unified Approach to Adaptive Regularization in Online and Stochastic Optimization

    Full text link
    We describe a framework for deriving and analyzing online optimization algorithms that incorporate adaptive, data-dependent regularization, also termed preconditioning. Such algorithms have been proven useful in stochastic optimization by reshaping the gradients according to the geometry of the data. Our framework captures and unifies much of the existing literature on adaptive online methods, including the AdaGrad and Online Newton Step algorithms as well as their diagonal versions. As a result, we obtain new convergence proofs for these algorithms that are substantially simpler than previous analyses. Our framework also exposes the rationale for the different preconditioned updates used in common stochastic optimization methods

    A unified view of entropy-regularized Markov decision processes

    Full text link
    We propose a general framework for entropy-regularized average-reward reinforcement learning in Markov decision processes (MDPs). Our approach is based on extending the linear-programming formulation of policy optimization in MDPs to accommodate convex regularization functions. Our key result is showing that using the conditional entropy of the joint state-action distributions as regularization yields a dual optimization problem closely resembling the Bellman optimality equations. This result enables us to formalize a number of state-of-the-art entropy-regularized reinforcement learning algorithms as approximate variants of Mirror Descent or Dual Averaging, and thus to argue about the convergence properties of these methods. In particular, we show that the exact version of the TRPO algorithm of Schulman et al. (2015) actually converges to the optimal policy, while the entropy-regularized policy gradient methods of Mnih et al. (2016) may fail to converge to a fixed point. Finally, we illustrate empirically the effects of using various regularization techniques on learning performance in a simple reinforcement learning setup

    Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset

    Full text link
    Recent research on problem formulations based on decomposition into low-rank plus sparse matrices shows a suitable framework to separate moving objects from the background. The most representative problem formulation is the Robust Principal Component Analysis (RPCA) solved via Principal Component Pursuit (PCP) which decomposes a data matrix in a low-rank matrix and a sparse matrix. However, similar robust implicit or explicit decompositions can be made in the following problem formulations: Robust Non-negative Matrix Factorization (RNMF), Robust Matrix Completion (RMC), Robust Subspace Recovery (RSR), Robust Subspace Tracking (RST) and Robust Low-Rank Minimization (RLRM). The main goal of these similar problem formulations is to obtain explicitly or implicitly a decomposition into low-rank matrix plus additive matrices. In this context, this work aims to initiate a rigorous and comprehensive review of the similar problem formulations in robust subspace learning and tracking based on decomposition into low-rank plus additive matrices for testing and ranking existing algorithms for background/foreground separation. For this, we first provide a preliminary review of the recent developments in the different problem formulations which allows us to define a unified view that we called Decomposition into Low-rank plus Additive Matrices (DLAM). Then, we examine carefully each method in each robust subspace learning/tracking frameworks with their decomposition, their loss functions, their optimization problem and their solvers. Furthermore, we investigate if incremental algorithms and real-time implementations can be achieved for background/foreground separation. Finally, experimental results on a large-scale dataset called Background Models Challenge (BMC 2012) show the comparative performance of 32 different robust subspace learning/tracking methods.Comment: 121 pages, 5 figures, submitted to Computer Science Review. arXiv admin note: text overlap with arXiv:1312.7167, arXiv:1109.6297, arXiv:1207.3438, arXiv:1105.2126, arXiv:1404.7592, arXiv:1210.0805, arXiv:1403.8067 by other authors, Computer Science Review, November 201

    Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates

    Full text link
    In this paper, we describe a phenomenon, which we named "super-convergence", where neural networks can be trained an order of magnitude faster than with standard training methods. The existence of super-convergence is relevant to understanding why deep networks generalize well. One of the key elements of super-convergence is training with one learning rate cycle and a large maximum learning rate. A primary insight that allows super-convergence training is that large learning rates regularize the training, hence requiring a reduction of all other forms of regularization in order to preserve an optimal regularization balance. We also derive a simplification of the Hessian Free optimization method to compute an estimate of the optimal learning rate. Experiments demonstrate super-convergence for Cifar-10/100, MNIST and Imagenet datasets, and resnet, wide-resnet, densenet, and inception architectures. In addition, we show that super-convergence provides a greater boost in performance relative to standard training when the amount of labeled training data is limited. The architectures and code to replicate the figures in this paper are available at github.com/lnsmith54/super-convergence. See http://www.fast.ai/2018/04/30/dawnbench-fastai/ for an application of super-convergence to win the DAWNBench challenge (see https://dawn.cs.stanford.edu/benchmark/).Comment: This paper was significantly revised to show super-convergence as a general fast training methodolog

    A Unified View of Regularized Dual Averaging and Mirror Descent with Implicit Updates

    Full text link
    We study three families of online convex optimization algorithms: follow-the-proximally-regularized-leader (FTRL-Proximal), regularized dual averaging (RDA), and composite-objective mirror descent. We first prove equivalence theorems that show all of these algorithms are instantiations of a general FTRL update. This provides theoretical insight on previous experimental observations. In particular, even though the FOBOS composite mirror descent algorithm handles L1 regularization explicitly, it has been observed that RDA is even more effective at producing sparsity. Our results demonstrate that FOBOS uses subgradient approximations to the L1 penalty from previous rounds, leading to less sparsity than RDA, which handles the cumulative penalty in closed form. The FTRL-Proximal algorithm can be seen as a hybrid of these two, and outperforms both on a large, real-world dataset. Our second contribution is a unified analysis which produces regret bounds that match (up to logarithmic terms) or improve the best previously known bounds. This analysis also extends these algorithms in two important ways: we support a more general type of composite objective and we analyze implicit updates, which replace the subgradient approximation of the current loss function with an exact optimization.Comment: Extensively updated version of earlier draft with new analysis including a general treatment of composite objectives and experiments. Also fixes a small bug in some of one of the proofs in the early versio

    A Survey of Algorithms and Analysis for Adaptive Online Learning

    Full text link
    We present tools for the analysis of Follow-The-Regularized-Leader (FTRL), Dual Averaging, and Mirror Descent algorithms when the regularizer (equivalently, prox-function or learning rate schedule) is chosen adaptively based on the data. Adaptivity can be used to prove regret bounds that hold on every round, and also allows for data-dependent regret bounds as in AdaGrad-style algorithms (e.g., Online Gradient Descent with adaptive per-coordinate learning rates). We present results from a large number of prior works in a unified manner, using a modular and tight analysis that isolates the key arguments in easily re-usable lemmas. This approach strengthens pre-viously known FTRL analysis techniques to produce bounds as tight as those achieved by potential functions or primal-dual analysis. Further, we prove a general and exact equivalence between an arbitrary adaptive Mirror Descent algorithm and a correspond- ing FTRL update, which allows us to analyze any Mirror Descent algorithm in the same framework. The key to bridging the gap between Dual Averaging and Mirror Descent algorithms lies in an analysis of the FTRL-Proximal algorithm family. Our regret bounds are proved in the most general form, holding for arbitrary norms and non-smooth regularizers with time-varying weight

    Online Linear Optimization via Smoothing

    Full text link
    We present a new optimization-theoretic approach to analyzing Follow-the-Leader style algorithms, particularly in the setting where perturbations are used as a tool for regularization. We show that adding a strongly convex penalty function to the decision rule and adding stochastic perturbations to data correspond to deterministic and stochastic smoothing operations, respectively. We establish an equivalence between "Follow the Regularized Leader" and "Follow the Perturbed Leader" up to the smoothness properties. This intuition leads to a new generic analysis framework that recovers and improves the previous known regret bounds of the class of algorithms commonly known as Follow the Perturbed Leader.Comment: COLT 201

    Extreme Tensoring for Low-Memory Preconditioning

    Full text link
    State-of-the-art models are now trained with billions of parameters, reaching hardware limits in terms of memory consumption. This has created a recent demand for memory-efficient optimizers. To this end, we investigate the limits and performance tradeoffs of memory-efficient adaptively preconditioned gradient methods. We propose extreme tensoring for high-dimensional stochastic optimization, showing that an optimizer needs very little memory to benefit from adaptive preconditioning. Our technique applies to arbitrary models (not necessarily with tensor-shaped parameters), and is accompanied by regret and convergence guarantees, which shed light on the tradeoffs between preconditioner quality and expressivity. On a large-scale NLP model, we reduce the optimizer memory overhead by three orders of magnitude, without degrading performance

    Proximal Reinforcement Learning: A New Theory of Sequential Decision Making in Primal-Dual Spaces

    Full text link
    In this paper, we set forth a new vision of reinforcement learning developed by us over the past few years, one that yields mathematically rigorous solutions to longstanding important questions that have remained unresolved: (i) how to design reliable, convergent, and robust reinforcement learning algorithms (ii) how to guarantee that reinforcement learning satisfies pre-specified "safety" guarantees, and remains in a stable region of the parameter space (iii) how to design "off-policy" temporal difference learning algorithms in a reliable and stable manner, and finally (iv) how to integrate the study of reinforcement learning into the rich theory of stochastic optimization. In this paper, we provide detailed answers to all these questions using the powerful framework of proximal operators. The key idea that emerges is the use of primal dual spaces connected through the use of a Legendre transform. This allows temporal difference updates to occur in dual spaces, allowing a variety of important technical advantages. The Legendre transform elegantly generalizes past algorithms for solving reinforcement learning problems, such as natural gradient methods, which we show relate closely to the previously unconnected framework of mirror descent methods. Equally importantly, proximal operator theory enables the systematic development of operator splitting methods that show how to safely and reliably decompose complex products of gradients that occur in recent variants of gradient-based temporal difference learning. This key technical innovation makes it possible to finally design "true" stochastic gradient methods for reinforcement learning. Finally, Legendre transforms enable a variety of other benefits, including modeling sparsity and domain geometry. Our work builds extensively on recent work on the convergence of saddle-point algorithms, and on the theory of monotone operators.Comment: 121 page

    Decoupled Weight Decay Regularization

    Full text link
    L2_2 regularization and weight decay regularization are equivalent for standard stochastic gradient descent (when rescaled by the learning rate), but as we demonstrate this is \emph{not} the case for adaptive gradient algorithms, such as Adam. While common implementations of these algorithms employ L2_2 regularization (often calling it "weight decay" in what may be misleading due to the inequivalence we expose), we propose a simple modification to recover the original formulation of weight decay regularization by \emph{decoupling} the weight decay from the optimization steps taken w.r.t. the loss function. We provide empirical evidence that our proposed modification (i) decouples the optimal choice of weight decay factor from the setting of the learning rate for both standard SGD and Adam and (ii) substantially improves Adam's generalization performance, allowing it to compete with SGD with momentum on image classification datasets (on which it was previously typically outperformed by the latter). Our proposed decoupled weight decay has already been adopted by many researchers, and the community has implemented it in TensorFlow and PyTorch; the complete source code for our experiments is available at https://github.com/loshchil/AdamW-and-SGDWComment: Published as a conference paper at ICLR 201
    • …
    corecore