3,617 research outputs found

    A Unified Approach for Indexed and Non-Indexed Spatial Joins

    Get PDF
    The original publication is available at www.springerlink.comL. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, J. Vahrenhold, and J. S. Vitter. “A Unified Approach for Indexed and Non-Indexed Spatial Joins,” Proceedings of the 7th International Conference on Extending Database Technology (EDBT ’00), Konstanz, Germany, March 2000, published in Lecture Notes in Computer Science, Springer, 1777, Berlin, Germany, 413–429

    New Plane-Sweep Algorithms for Distance-Based Join Queries in Spatial Databases

    Get PDF
    Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied DJQs are the K Closest Pairs Query (KCPQ) and εDistance Join Query (εDJQ). These spatial queries involve two spatial data sets and a distance function to measure the degree of closeness, along with a given number of pairs in the final result (K) or a distance threshold (ε). In this paper, we propose four new plane-sweep-based algorithms for KCPQs and their extensions for εDJQs in the context of spatial databases, without the use of an index for any of the two disk-resident data sets (since, building and using indexes is not always in favor of processing performance). They employ a combination of plane-sweep algorithms and space partitioning techniques to join the data sets. Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the proposed algorithms for KCPQs and εDJQs. This performance study, conducted on medium and big spatial data sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method), for KCPQs and εDJQs, using the same data sets. This comparison shows that the new algorithms outperform R-tree based algorithms, in most cases

    What makes spatial data big? A discussion on how to partition spatial data

    Get PDF
    The amount of available spatial data has significantly increased in the last years so that traditional analysis tools have become inappropriate to effectively manage them. Therefore, many attempts have been made in order to define extensions of existing MapReduce tools, such as Hadoop or Spark, with spatial capabilities in terms of data types and algorithms. Such extensions are mainly based on the partitioning techniques implemented for textual data where the dimension is given in terms of the number of occupied bytes. However, spatial data are characterized by other features which describe their dimension, such as the number of vertices or the MBR size of geometries, which greatly affect the performance of operations, like the spatial join, during data analysis. The result is that the use of traditional partitioning techniques prevents to completely exploit the benefit of the parallel execution provided by a MapReduce environment. This paper extensively analyses the problem considering the spatial join operation as use case, performing both a theoretical and an experimental analysis for it. Moreover, it provides a solution based on a different partitioning technique, which splits complex or extensive geometries. Finally, we validate the proposed solution by means of some experiments on synthetic and real datasets
    • …
    corecore