6,466 research outputs found

    A Unified Primal Dual Active Set Algorithm for Nonconvex Sparse Recovery

    Full text link
    In this paper, we consider the problem of recovering a sparse signal based on penalized least squares formulations. We develop a novel algorithm of primal-dual active set type for a class of nonconvex sparsity-promoting penalties, including â„“0\ell^0, bridge, smoothly clipped absolute deviation, capped â„“1\ell^1 and minimax concavity penalty. First we establish the existence of a global minimizer for the related optimization problems. Then we derive a novel necessary optimality condition for the global minimizer using the associated thresholding operator. The solutions to the optimality system are coordinate-wise minimizers, and under minor conditions, they are also local minimizers. Upon introducing the dual variable, the active set can be determined using the primal and dual variables together. Further, this relation lends itself to an iterative algorithm of active set type which at each step involves first updating the primal variable only on the active set and then updating the dual variable explicitly. When combined with a continuation strategy on the regularization parameter, the primal dual active set method is shown to converge globally to the underlying regression target under certain regularity conditions. Extensive numerical experiments with both simulated and real data demonstrate its superior performance in efficiency and accuracy compared with the existing sparse recovery methods

    The Sparse Principal Component Analysis Problem: Optimality Conditions and Algorithms

    Full text link
    Sparse principal component analysis addresses the problem of finding a linear combination of the variables in a given data set with a sparse coefficients vector that maximizes the variability of the data. This model enhances the ability to interpret the principal components, and is applicable in a wide variety of fields including genetics and finance, just to name a few. We suggest a necessary coordinate-wise-based optimality condition, and show its superiority over the stationarity-based condition that is commonly used in the literature, and which is the basis for many of the algorithms designed to solve the problem. We devise algorithms that are based on the new optimality condition, and provide numerical experiments that support our assertion that algorithms, which are guaranteed to converge to stronger optimality conditions, perform better than algorithms that converge to points satisfying weaker optimality conditions

    On the Linear Convergence of the Approximate Proximal Splitting Method for Non-Smooth Convex Optimization

    Full text link
    Consider the problem of minimizing the sum of two convex functions, one being smooth and the other non-smooth. In this paper, we introduce a general class of approximate proximal splitting (APS) methods for solving such minimization problems. Methods in the APS class include many well-known algorithms such as the proximal splitting method (PSM), the block coordinate descent method (BCD) and the approximate gradient projection methods for smooth convex optimization. We establish the linear convergence of APS methods under a local error bound assumption. Since the latter is known to hold for compressive sensing and sparse group LASSO problems, our analysis implies the linear convergence of the BCD method for these problems without strong convexity assumption.Comment: 21 pages, no figure

    Convex Global 3D Registration with Lagrangian Duality

    Get PDF
    The registration of 3D models by a Euclidean transformation is a fundamental task at the core of many application in computer vision. This problem is non-convex due to the presence of rotational constraints, making traditional local optimization methods prone to getting stuck in local minima. This paper addresses finding the globally optimal transformation in various 3D registration problems by a unified formulation that integrates common geometric registration modalities (namely point-to-point, point-to-line and point-to-plane). This formulation renders the optimization problem independent of both the number and nature of the correspondences. The main novelty of our proposal is the introduction of a strengthened Lagrangian dual relaxation for this problem, which surpasses previous similar approaches [32] in effectiveness. In fact, even though with no theoretical guarantees, exhaustive empirical evaluation in both synthetic and real experiments always resulted on a tight relaxation that allowed to recover a guaranteed globally optimal solution by exploiting duality theory. Thus, our approach allows for effectively solving the 3D registration with global optimality guarantees while running at a fraction of the time for the state-of-the-art alternative [34], based on a more computationally intensive Branch and Bound method.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Screening Rules for Lasso with Non-Convex Sparse Regularizers

    Full text link
    Leveraging on the convexity of the Lasso problem , screening rules help in accelerating solvers by discarding irrelevant variables, during the optimization process. However, because they provide better theoretical guarantees in identifying relevant variables, several non-convex regularizers for the Lasso have been proposed in the literature. This work is the first that introduces a screening rule strategy into a non-convex Lasso solver. The approach we propose is based on a iterative majorization-minimization (MM) strategy that includes a screening rule in the inner solver and a condition for propagating screened variables between iterations of MM. In addition to improve efficiency of solvers, we also provide guarantees that the inner solver is able to identify the zeros components of its critical point in finite time. Our experimental analysis illustrates the significant computational gain brought by the new screening rule compared to classical coordinate-descent or proximal gradient descent methods

    A consistent operator splitting algorithm and a two-metric variant: Application to topology optimization

    Full text link
    In this work, we explore the use of operator splitting algorithms for solving regularized structural topology optimization problems. The context is the classical structural design problems (e.g., compliance minimization and compliant mechanism design), parameterized by means of density functions, whose ill-posendess is addressed by introducing a Tikhonov regularization term. The proposed forward-backward splitting algorithm treats the constituent terms of the cost functional separately which allows suitable approximations of the structural objective. We will show that one such approximation, inspired by the optimality criteria algorithm and reciprocal expansions, improves the convergence characteristics and leads to an update scheme that resembles the well-known heuristic sensitivity filtering method. We also discuss a two-metric variant of the splitting algorithm that removes the computational overhead associated with bound constraints on the density field without compromising convergence and quality of optimal solutions. We present several numerical results and investigate the influence of various algorithmic parameters

    Accelerated Parallel and Distributed Algorithm using Limited Internal Memory for Nonnegative Matrix Factorization

    Full text link
    Nonnegative matrix factorization (NMF) is a powerful technique for dimension reduction, extracting latent factors and learning part-based representation. For large datasets, NMF performance depends on some major issues: fast algorithms, fully parallel distributed feasibility and limited internal memory. This research aims to design a fast fully parallel and distributed algorithm using limited internal memory to reach high NMF performance for large datasets. In particular, we propose a flexible accelerated algorithm for NMF with all its L1L_1 L2L_2 regularized variants based on full decomposition, which is a combination of an anti-lopsided algorithm and a fast block coordinate descent algorithm. The proposed algorithm takes advantages of both these algorithms to achieve a linear convergence rate of O(1−1∣∣Q∣∣2)k\mathcal{O}(1-\frac{1}{||Q||_2})^k in optimizing each factor matrix when fixing the other factor one in the sub-space of passive variables, where rr is the number of latent components; where r≤∣∣Q∣∣2≤r\sqrt{r} \leq ||Q||_2 \leq r. In addition, the algorithm can exploit the data sparseness to run on large datasets with limited internal memory of machines. Furthermore, our experimental results are highly competitive with 7 state-of-the-art methods about three significant aspects of convergence, optimality and average of the iteration number. Therefore, the proposed algorithm is superior to fast block coordinate descent methods and accelerated methods

    An equivalence between stationary points for rank constraints versus low-rank factorizations

    Full text link
    Two common approaches in low-rank optimization problems are either working directly with a rank constraint on the matrix variable, or optimizing over a low-rank factorization so that the rank constraint is implicitly ensured. In this paper, we study the natural connection between the rank-constrained and factorized approaches. We show that all second-order stationary points of the factorized objective function correspond to stationary points of projected gradient descent run on the original problem (where the projection step enforces the rank constraint). This result allows us to unify many existing optimization guarantees that have been proved specifically in either the rank-constrained or the factorized setting, and leads to new results for certain settings of the problem

    Certifiably Optimal Low Rank Factor Analysis

    Full text link
    Factor Analysis (FA) is a technique of fundamental importance that is widely used in classical and modern multivariate statistics, psychometrics and econometrics. In this paper, we revisit the classical rank-constrained FA problem, which seeks to approximate an observed covariance matrix (Σ\boldsymbol\Sigma), by the sum of a Positive Semidefinite (PSD) low-rank component (Θ\boldsymbol\Theta) and a diagonal matrix (Φ\boldsymbol\Phi) (with nonnegative entries) subject to Σ−Φ\boldsymbol\Sigma - \boldsymbol\Phi being PSD. We propose a flexible family of rank-constrained, nonlinear Semidefinite Optimization based formulations for this task. We introduce a reformulation of the problem as a smooth optimization problem with convex compact constraints and propose a unified algorithmic framework, utilizing state of the art techniques in nonlinear optimization to obtain high-quality feasible solutions for our proposed formulation. At the same time, by using a variety of techniques from discrete and global optimization, we show that these solutions are certifiably optimal in many cases, even for problems with thousands of variables. Our techniques are general and make no assumption on the underlying problem data. The estimator proposed herein, aids statistical interpretability, provides computational scalability and significantly improved accuracy when compared to current, publicly available popular methods for rank-constrained FA. We demonstrate the effectiveness of our proposal on an array of synthetic and real-life datasets. To our knowledge, this is the first paper that demonstrates how a previously intractable rank-constrained optimization problem can be solved to provable optimality by coupling developments in convex analysis and in discrete optimization

    Fixed Points of Generalized Approximate Message Passing with Arbitrary Matrices

    Full text link
    The estimation of a random vector with independent components passed through a linear transform followed by a componentwise (possibly nonlinear) output map arises in a range of applications. Approximate message passing (AMP) methods, based on Gaussian approximations of loopy belief propagation, have recently attracted considerable attention for such problems. For large random transforms, these methods exhibit fast convergence and admit precise analytic characterizations with testable conditions for optimality, even for certain non-convex problem instances. However, the behavior of AMP under general transforms is not fully understood. In this paper, we consider the generalized AMP (GAMP) algorithm and relate the method to more common optimization techniques. This analysis enables a precise characterization of the GAMP algorithm fixed-points that applies to arbitrary transforms. In particular, we show that the fixed points of the so-called max-sum GAMP algorithm for MAP estimation are critical points of a constrained maximization of the posterior density. The fixed-points of the sum-product GAMP algorithm for estimation of the posterior marginals can be interpreted as critical points of a certain free energy
    • …
    corecore