280 research outputs found

    Integrated Model Checking of Static Structure and Dynamic Behavior using Temporal Description Logics

    Get PDF
    This paper presents a new notation for the formal representation of the static structure and dynamic behavior of software, based on description logics and temporal logics. The static structure as described by UML class diagrams is represented formally by description logics while the dynamic behavior is represented by linear temporal logic and state transition systems. We integrate these descriptions of static and dynamic aspects into a single formalism called LTLDL. LTLDL enables a concise and natural yet precise definition of the behavior of software w.r.t. UML class diagrams and state transition diagrams. We demonstrate our approach on the sake warehouse problem. Further, we describe how properties of finite LTLDL models can be analyzed based on bounded model checking and SMT (satisfiability modulo theory) solving. We implemented a restricted SMT solver for finite sets and relations. This SMT solver helped to reduce the model checking runtime significantly as compared to bounded model checking with existing tools

    EMFtoCSP: A Tool for the Lightweight Verification of EMF Models

    Get PDF
    International audienceThe increasing popularity of MDE results in the creation of larger models and model transformations, hence converting the specification of MDE artefacts in an error-prone task. Therefore, mechanisms to ensure quality and absence of errors in models are needed to assure the reliability of the MDE-based development process. Formal methods have proven their worth in the verification of software and hardware systems. However, the adoption of formal methods as a valid alternative to ensure model correctness is compromised for the inner complexity of the problem. To circumvent this complexity, it is common to impose limitations such as reducing the type of constructs that can appear in the model, or turning the verification process from automatic into user assisted. Since we consider these limitations to be counterproductive for the adoption of formal methods, in this paper we present EMFtoCSP, a new tool for the fully automatic, decidable and expressive verification of EMF models that uses constraint logic programming as the underlying formalism

    A cookbook for temporal conceptual data modelling with description logic

    Get PDF
    We design temporal description logics suitable for reasoning about temporal conceptual data models and investigate their computational complexity. Our formalisms are based on DL-Lite logics with three types of concept inclusions (ranging from atomic concept inclusions and disjointness to the full Booleans), as well as cardinality constraints and role inclusions. In the temporal dimension, they capture future and past temporal operators on concepts, flexible and rigid roles, the operators `always' and `some time' on roles, data assertions for particular moments of time and global concept inclusions. The logics are interpreted over the Cartesian products of object domains and the flow of time (Z,<), satisfying the constant domain assumption. We prove that the most expressive of our temporal description logics (which can capture lifespan cardinalities and either qualitative or quantitative evolution constraints) turn out to be undecidable. However, by omitting some of the temporal operators on concepts/roles or by restricting the form of concept inclusions we obtain logics whose complexity ranges between PSpace and NLogSpace. These positive results were obtained by reduction to various clausal fragments of propositional temporal logic, which opens a way to employ propositional or first-order temporal provers for reasoning about temporal data models

    The KB paradigm and its application to interactive configuration

    Full text link
    The knowledge base paradigm aims to express domain knowledge in a rich formal language, and to use this domain knowledge as a knowledge base to solve various problems and tasks that arise in the domain by applying multiple forms of inference. As such, the paradigm applies a strict separation of concerns between information and problem solving. In this paper, we analyze the principles and feasibility of the knowledge base paradigm in the context of an important class of applications: interactive configuration problems. In interactive configuration problems, a configuration of interrelated objects under constraints is searched, where the system assists the user in reaching an intended configuration. It is widely recognized in industry that good software solutions for these problems are very difficult to develop. We investigate such problems from the perspective of the KB paradigm. We show that multiple functionalities in this domain can be achieved by applying different forms of logical inferences on a formal specification of the configuration domain. We report on a proof of concept of this approach in a real-life application with a banking company. To appear in Theory and Practice of Logic Programming (TPLP).Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Deciding Second-order Logics using Database Evaluation Techniques

    Get PDF
    We outline a novel technique that maps the satisfiability problems of second-order logics, in particular WSnS (weak monadic second-order logic with n successors), S1S (monadic second-order logic with one successor), and of μ-calculus, to the problem of query evaluation of Complex-value Datalog queries. In this dissertation, we propose techniques that use database evaluation and optimization techniques for automata-based decision procedures for the above logics. We show how the use of advanced implementation techniques for Deductive databases and for Logic Programs, in particular the use of tabling, yields a considerable improvement in performance over more traditional approaches. We also explore various optimizations of the proposed technique, in particular we consider variants of tabling and goal reordering. We then show that the decision problem for S1S can be mapped to the problem of query evaluation of Complex-value Datalog queries. We explore optimizations that can be applied to various types of formulas. Last, we propose analogous techniques that allow us to approach μ-calculus satisfiability problem in an incremental fashion and without the need for re-computation. In addition, we outline a top-down evaluation technique to drive our incremental procedure and propose heuristics that guide the problem partitioning to reduce the size of the problems that need to be solved

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Automated end user-centred adaptation of web components through automated description logic-based reasoning

    Get PDF
    Context: This paper addresses one of the major end-user development (EUD) challenges, namely, how to pack today?s EUD support tools with composable elements. This would give end users better access to more components which they can use to build a solution tailored to their own needs. The success of later end-user software engineering (EUSE) activities largely depends on how many components each tool has and how adaptable components are to multiple problem domains. Objective: A system for automatically adapting heterogeneous components to a common development environment would offer a sizeable saving of time and resources within the EUD support tool construction process. This paper presents an automated adaptation system for transforming EUD components to a standard format. Method: This system is based on the use of description logic. Based on a generic UML2 data model, this description logic is able to check whether an end-user component can be transformed to this modeling language through subsumption or as an instance of the UML2 model. Besides it automatically finds a consistent, non-ambiguous and finite set of XSLT mappings to automatically prepare data in order to leverage the component as part of a tool that conforms to the target UML2 component model. Results: The proposed system has been successfully applied to components from four prominent EUD tools. These components were automatically converted to a standard format. In order to validate the proposed system, rich internet applications (RIA) used as an operational support system for operators at a large services company were developed using automatically adapted standard format components. These RIAs would be impossible to develop using each EUD tool separately. Conclusion: The positive results of applying our system for automatically adapting components from current tool catalogues are indicative of the system?s effectiveness. Use of this system could foster the growth of web EUD component catalogues, leveraging a vast ecosystem of user-centred SaaS to further current EUSE trends

    The complexity of clausal fragments of LTL

    Get PDF
    We introduce and investigate a number of fragments of propositional temporal logic LTL over the flow of time (ℤ, <). The fragments are defined in terms of the available temporal operators and the structure of the clausal normal form of the temporal formulas. We determine the computational complexity of the satisfiability problem for each of the fragments, which ranges from NLogSpace to PTime, NP and PSpace
    corecore