775 research outputs found

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Fully-deterministic execution of IEC-61499 models for Distributed Avionics Applications

    Get PDF
    © 2018 by the authors. The development of time-critical Distributed Avionics Applications (DAAs) pushes beyond the limit of existing modeling methodologies to design dependable systems. Aerospace and industrial automation entail high-integrity applications where execution time is essential for dependability. This tempts us to use modeling technologies from one domain in another. The challenge is to demonstrate that they can be effectively used across domains whilst assuring temporally dependable applications. This paper shows that an IEC61499-modeled DAA can satisfy temporal dependability requirements as to end-to-end flow latency when it is properly scheduled and realized in a fully deterministic avionics platform that entails Integrated Modular Avionics (IMA) computation along with Time-Triggered Protocol (TTP) communication. Outcomes from the execution design of an IEC61499-based DAA model for an IMA-TTP platform are used to check runtime correctness through DAA control stability. IEC 61499 is a modeling standard for industrial automation, and it is meant to facilitate distribution and reconfiguration of applications. The DAA case study is a Distributed Fluid Control System (DFCS) for the Airbus-A380 fuel system. Latency analysis results from timing metrics as well as closed-loop control simulation results are presented. Experimental outcomes suggest that an IEC61499-based DFCS model can achieve desired runtime latency for temporal dependability when executed in an IMA-TTP platform. Concluding remarks and future research direction are also discussed

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities

    Revised reference model

    Get PDF
    This document contains an update of the HIDENETS Reference Model, whose preliminary version was introduced in D1.1. The Reference Model contains the overall approach to development and assessment of end-to-end resilience solutions. As such, it presents a framework, which due to its abstraction level is not only restricted to the HIDENETS car-to-car and car-to-infrastructure applications and use-cases. Starting from a condensed summary of the used dependability terminology, the network architecture containing the ad hoc and infrastructure domain and the definition of the main networking elements together with the software architecture of the mobile nodes is presented. The concept of architectural hybridization and its inclusion in HIDENETS-like dependability solutions is described subsequently. A set of communication and middleware level services following the architecture hybridization concept and motivated by the dependability and resilience challenges raised by HIDENETS-like scenarios is then described. Besides architecture solutions, the reference model addresses the assessment of dependability solutions in HIDENETS-like scenarios using quantitative evaluations, realized by a combination of top-down and bottom-up modelling, as well as verification via test scenarios. In order to allow for fault prevention in the software development phase of HIDENETS-like applications, generic UML-based modelling approaches with focus on dependability related aspects are described. The HIDENETS reference model provides the framework in which the detailed solution in the HIDENETS project are being developed, while at the same time facilitating the same task for non-vehicular scenarios and application

    A Semantic Agent Framework for Cyber-Physical Systems

    Get PDF
    The development of accurate models for cyber-physical systems (CPSs) is hampered by the complexity of these systems, fundamental differences in the operation of cyber and physical components, and significant interdependencies among these components. Agent-based modeling shows promise in overcoming these challenges, due to the flexibility of software agents as autonomous and intelligent decision-making components. Semantic agent systems are even more capable, as the structure they provide facilitates the extraction of meaningful content from the data provided to the software agents. In this book chapter, we present a multi-agent model for a CPS, where the semantic capabilities are underpinned by sensor networks that provide information about the physical operation to the cyber infrastructure. As a specific example of the semantic interpretation of raw sensor data streams, we present a failure detection ontology for an intelligent water distribution network as a model CPS. The ontology represents physical entities in the CPS, as well as the information extraction, analysis and processing that takes place in relation to these entities. The chapter concludes with introduction of a semantic agent framework for CPS, and presentation of a sample implementation of the framework using C++

    Pervasive computing at tableside : a wireless web-based ordering system

    Full text link
    Purpose &ndash; The purpose of this paper is to introduce a wireless web-based ordering system called iMenu in the restaurant industry. Design/methodology/approach &ndash; By using wireless devices such as personal digital assistants and WebPads, this system realizes the paradigm of pervasive computing at tableside. Detailed system requirements, design, implementation and evaluation of iMenu are presented.Findings &ndash; The evaluation of iMenu shows it explicitly increases productivity of restaurant staff. It also has other desirable features such as integration, interoperation and scalability. Compared to traditional restaurant ordering process, by using this system customers get faster and better services, restaurant staff cooperate more efficiently with less working mistakes, and enterprise owners thus receive more business profits. Originality/value &ndash; While many researchers have explored using wireless web-based information systems in different industries, this paper presents a system that employs wireless multi-tiered web-based architecture to build pervasive computing systems. Instead of discussing theoretical issues on pervasive computing, we focus on practical issues of developing a real system, such as choosing of web-based architecture, design of input methods in small screens, and response time in wireless web-based systems.<br /

    Uncertainty representation in software models: a survey

    Get PDF
    This paper provides a comprehensive overview and analysis of research work on how uncertainty is currently represented in software models. The survey presents the definitions and current research status of different proposals for addressing uncertainty modeling and introduces a classification framework that allows to compare and classify existing proposals, analyze their current status and identify new trends. In addition, we discuss possible future research directions, opportunities and challenges.This work is partially supported by the European Commission (FEDER) and the Spanish Government under projects APOLO (US1264651), HORATIO (RTI2018-101204-B-C21), EKIPMENT-PLUS (P18-FR-2895) and COSCA (PGC2018-094905-B-I00)

    Model-driven engineering for mobile robotic systems: a systematic mapping study

    Get PDF
    Mobile robots operate in various environments (e.g. aquatic, aerial, or terrestrial), they come in many diverse shapes and they are increasingly becoming parts of our lives. The successful engineering of mobile robotics systems demands the interdisciplinary collaboration of experts from different domains, such as mechanical and electrical engineering, artificial intelligence, and systems engineering. Research and industry have tried to tackle this heterogeneity by proposing a multitude of model-driven solutions to engineer the software of mobile robotics systems. However, there is no systematic study of the state of the art in model-driven engineering (MDE) for mobile robotics systems that could guide research or practitioners in finding model-driven solutions and tools to efficiently engineer mobile robotics systems. The paper is contributing to this direction by providing a map of software engineering research in MDE that investigates (1) which types of robots are supported by existing MDE approaches, (2) the types and characteristics of MRSs that are engineered using MDE approaches, (3) a description of how MDE approaches support the engineering of MRSs, (4) how existing MDE approaches are validated, and (5) how tools support existing MDE approaches. We also provide a replication package to assess, extend, and/or replicate the study. The results of this work and the highlighted challenges can guide researchers and practitioners from robotics and software engineering through the research landscape

    Finalised dependability framework and evaluation results

    Get PDF
    The ambitious aim of CONNECT is to achieve universal interoperability between heterogeneous Networked Systems by means of on-the-fly synthesis of the CONNECTors through which they communicate. The goal of WP5 within CONNECT is to ensure that the non-functional properties required at each side of the connection going to be established are fulfilled, including dependability, performance, security and trust, or, in one overarching term, CONNECTability. To model such properties, we have introduced the CPMM meta-model which establishes the relevant concepts and their relations, and also includes a Complex Event language to express the behaviour associated with the specified properties. Along the four years of project duration, we have developed approaches for assuring CONNECTability both at synthesis time and at run-time. Within CONNECT architecture, these approaches are supported via the following enablers: the Dependability and Performance analysis Enabler, which is implemented in a modular architecture supporting stochastic verification and state-based analysis. Dependability and performance analysis also relies on approaches for incremental verification to adjust CONNECTor parameters at run-time; the Security Enabler, which implements a Security-by-Contract-with-Trust framework to guarantee the expected security policies and enforce them accordingly to the level of trust; the Trust Manager that implements a model-based approach to mediate between different trust models and ensure interoperable trust management. The enablers have been integrated within the CONNECT architecture, and in particular can interact with the CONNECT event-based monitoring enabler (GLIMPSE Enabler released within WP4) for run-time analysis and verification. To support a Model-driven approach in the interaction with the monitor, we have developed a CPMM editor and a translator from CPMM to the GLIMPSE native language (Drools). In this document that is the final deliverable from WP5 we first present the latest advances in the fourth year concerning CPMM, Dependability&Performance Analysis, Incremental Verification and Security. Then, we make an overall summary of main achievements for the whole project lifecycle. In appendix we also include some relevant articles specifically focussing on CONNECTability that have been prepared in the last period
    • …
    corecore