222 research outputs found

    Uav-assisted data collection in wireless sensor networks: A comprehensive survey

    Get PDF
    Wireless sensor networks (WSNs) are usually deployed to different areas of interest to sense phenomena, process sensed data, and take actions accordingly. The networks are integrated with many advanced technologies to be able to fulfill their tasks that is becoming more and more complicated. These networks tend to connect to multimedia networks and to process huge data over long distances. Due to the limited resources of static sensor nodes, WSNs need to cooperate with mobile robots such as unmanned ground vehicles (UGVs), or unmanned aerial vehicles (UAVs) in their developments. The mobile devices show their maneuverability, computational and energystorage abilities to support WSNs in multimedia networks. This paper addresses a comprehensive survey of almost scenarios utilizing UAVs and UGVs with strogly emphasising on UAVs for data collection in WSNs. Either UGVs or UAVs can collect data from static sensor nodes in the monitoring fields. UAVs can either work alone to collect data or can cooperate with other UAVs to increase their coverage in their working fields. Different techniques to support the UAVs are addressed in this survey. Communication links, control algorithms, network structures and different mechanisms are provided and compared. Energy consumption or transportation cost for such scenarios are considered. Opening issues and challenges are provided and suggested for the future developments

    Wildfire Monitoring Based on Energy Efficient Clustering Approach for FANETS

    Get PDF
    Forest fires are a significant threat to the ecological system’s stability. Several attempts have been made to detect forest fires using a variety of approaches, including optical fire sensors, and satellite-based technologies, all of which have been unsuccessful. In today’s world, research on flying ad hoc networks (FANETs) is a thriving field and can be used successfully. This paper describes a unique clustering approach that identifies the presence of a fire zone in a forest and transfers all sensed data to a base station as soon as feasible via wireless communication. The fire department takes the required steps to prevent the spread of the fire. It is proposed in this study that an efficient clustering approach be used to deal with routing and energy challenges to extend the lifetime of an unmanned aerial vehicle (UAV) in case of forest fires. Due to the restricted energy and high mobility, this directly impacts the flying duration and routing of FANET nodes. As a result, it is vital to enhance the lifetime of wireless sensor networks (WSNs) to maintain high system availability. Our proposed algorithm EE-SS regulates the energy usage of nodes while taking into account the features of a disaster region and other factors. For firefighting, sensor nodes are placed throughout the forest zone to collect essential data points for identifying forest fires and dividing them into distinct clusters. All of the sensor nodes in the cluster communicate their packets to the base station continually through the cluster head. When FANET nodes communicate with one another, their transmission range is constantly adjusted to meet their operating requirements. This paper examines the existing clustering techniques for forest fire detection approaches restricted to wireless sensor networks and their limitations. Our newly designed algorithm chooses the most optimum cluster heads (CHs) based on their fitness, reducing the routing overhead and increasing the system’s efficiency. Our proposed method results from simulations are compared with the existing approaches such as LEACH, LEACH-C, PSO-HAS, and SEED. The evaluation is carried out concerning overall energy usage, residual energy, the count of live nodes, the network lifetime, and the time it takes to build a cluster compared to other approaches. As a result, our proposed EE-SS algorithm outperforms all the considered state-of-art algorithms.publishedVersio

    Data collection of mobile sensor networks by drones

    Get PDF
    Data collection by autonomous mobile sensor arrays can be coupled with the use of drones which provide a low-cost, easily deployable backhauling solution. These means of collection can be used to organize temporary events (sporting or cultural) or to carry out operations in difficult or hostile terrain. The aim of this thesis is to propose effective solutions for communication between both mobile sensors on the ground and on the edge-to-ground link. For this purpose, we are interested in scheduling communications, routing and access control on the sensor / drone link, the mobile collector. We propose an architecture that meets the constraints of the network. The main ones are the intermittence of the links and therefore the lack of connectivity for which solutions adapted to the networks tolerant to the deadlines are adopted. Given the limited opportunities for communication with the drone and the significant variation in the physical data rate, we proposed scheduling solutions that take account of both the contact time and the physical flow rate. Opportunistic routing is also based on these two criteria both for the selection of relay nodes and for the management of queues. We wanted to limit the overhead and propose efficient and fair solutions between mobile sensors on the ground. The proposed solutions have proved superior to conventional scheduling and routing solutions. Finally, we proposed a method of access combining a random access with contention as well as an access with reservation taking into account the aforementioned criteria. This flexible solution allows a network of dense mobile sensors to get closer to the performance obtained in an oracle mode. The proposed solutions can be implemented and applied in different application contexts for which the ground nodes are mobile or easily adapted to the case where the nodes are static

    Data Analytics and Performance Enhancement in Edge-Cloud Collaborative Internet of Things Systems

    Get PDF
    Based on the evolving communications, computing and embedded systems technologies, Internet of Things (IoT) systems can interconnect not only physical users and devices but also virtual services and objects, which have already been applied to many different application scenarios, such as smart home, smart healthcare, and intelligent transportation. With the rapid development, the number of involving devices increases tremendously. The huge number of devices and correspondingly generated data bring critical challenges to the IoT systems. To enhance the overall performance, this thesis aims to address the related technical issues on IoT data processing and physical topology discovery of the subnets self-organized by IoT devices. First of all, the issues on outlier detection and data aggregation are addressed through the development of recursive principal component analysis (R-PCA) based data analysis framework. The framework is developed in a cluster-based structure to fully exploit the spatial correlation of IoT data. Specifically, the sensing devices are gathered into clusters based on spatial data correlation. Edge devices are assigned to the clusters for the R-PCA based outlier detection and data aggregation. The outlier-free and aggregated data are forwarded to the remote cloud server for data reconstruction and storage. Moreover, a data reduction scheme is further proposed to relieve the burden on the trunk link for data uploading by utilizing the temporal data correlation. Kalman filters (KFs) with identical parameters are maintained at the edge and cloud for data prediction. The amount of data uploading is reduced by using the data predicted by the KF in the cloud instead of uploading all the practically measured data. Furthermore, an unmanned aerial vehicle (UAV) assisted IoT system is particularly designed for large-scale monitoring. Wireless sensor nodes are flexibly deployed for environmental sensing and self-organized into wireless sensor networks (WSNs). A physical topology discovery scheme is proposed to construct the physical topology of WSNs in the cloud server to facilitate performance optimization, where the physical topology indicates both the logical connectivity statuses of WSNs and the physical locations of WSN nodes. The physical topology discovery scheme is implemented through the newly developed parallel Metropolis-Hastings random walk based information sampling and network-wide 3D localization algorithms, where UAVs are served as the mobile edge devices and anchor nodes. Based on the physical topology constructed in the cloud, a UAV-enabled spatial data sampling scheme is further proposed to efficiently sample data from the monitoring area by using denoising autoencoder (DAE). By deploying the encoder of DAE at the UAV and decoder in the cloud, the data can be partially sampled from the sensing field and accurately reconstructed in the cloud. In the final part of the thesis, a novel autoencoder (AE) neural network based data outlier detection algorithm is proposed, where both encoder and decoder of AE are deployed at the edge devices. Data outliers can be accurately detected by the large fluctuations in the squared error generated by the data passing through the encoder and decoder of the AE

    Monitoring System-Based Flying IoT in Public Health and Sports Using Ant-Enabled Energy-Aware Routing.

    Full text link
    In recent decades, the Internet of flying networks has made significant progress. Several aerial vehicles communicate with one another to form flying ad hoc networks. Unmanned aerial vehicles perform a wide range of tasks that make life easier for humans. However, due to the high frequency of mobile flying vehicles, network problems such as packet loss, latency, and perhaps disrupted channel links arise, affecting data delivery. The use of UAV-enabled IoT in sports has changed the dynamics of tracking and working on player safety. WBAN can be merged with aerial vehicles to collect data regarding health and transfer it to a base station. Furthermore, the unbalanced energy usage of flying things will result in earlier mission failure and a rapid decline in network lifespan. This study describes the use of each UAV's residual energy level to ensure a high level of safety using an ant-based routing technique called AntHocNet. In health care, the use of IoT-assisted aerial vehicles would increase operational performance, surveillance, and automation optimization to provide a smart application of flying IoT. Apart from that, aerial vehicles can be used in remote communication for treatment, medical equipment distribution, and telementoring. While comparing routing algorithms, simulation findings indicate that the proposed ant-based routing protocol is optimal

    Sistema de valoración funcional para sistemas de aeronavegación no tripulados a partir de la calidad de la información

    Get PDF
    Unmanned aerial navigation systems are not used in many military and non-military applications. However, these systems are susceptible be operated by hackers partially or completely. Therefore, in this article based on the JDL model for safety assessment of the drone’s framework it is proposed. Metrics for each level of the merger in conjunction with a mapping system in order to determine the dependence of data between different levels are proposed, considering the contextual user ratings.Los sistemas de aeronavegación no tripulados son utilizados en múltiples aplicaciones militares y no militares. Sin embargo, estos sistemas son susceptibles de ser intervenidos por delincuentes informáticos parcial o totalmente. En este artículo se propone un framework basado en el modelo JDL para la evaluación de la seguridad de los drones y se establecen criterios de evaluación de desempeño y de calidad de la información para cada nivel de la fusión, en conjunto con un sistema de mapeo de estas métricas, con el fin de determinar la dependencia de los datos entre diferentes niveles, contemplando la valoración contextual del usuario

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future
    corecore