174 research outputs found

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography

    Microwave Satellite Measurements for Coastal Area and Extreme Weather Monitoring

    Get PDF
    In this project report, the main outcomes relevant to the Sino-European Dragon-4 cooperation project ID 32235 “Microwave satellite measurements for coastal area and extreme weather monitoring” are reported. The project aimed at strengthening the Sino-European research cooperation in the exploitation of European Space Agency, Chinese and third-party mission Earth Observation (EO) microwave satellite data. The latter were exploited to perform an effective monitoring of coastal areas, even under extreme weather conditions. An integrated multifrequency/polarization approach based on complementary microwave sensors (e.g., Synthetic Aperture Radar, scatterometer, radiometer), together with ancillary information coming from independent sources, i.e., optical imagery, numerical simulations and ground measurements, was designed. In this framework, several tasks were addressed including marine target detection, sea pollution, sea surface wind estimation and coastline extraction/classification. The main outcomes are both theoretical (i.e., new models and algorithms were developed) and applicative (i.e., user-friendly maps were provided to the end-user community of coastal area management according to smart processing of remotely sensed data). The scientific relevance consists in the development of new algorithms, the effectiveness and robustness of which were verified on actual microwave measurements, and the improvement of existing methodologies to deal with challenging test cases

    Evaluation of wave retrieval for Chinese Gaofen-3 synthetic aperture radar

    Get PDF
    The goal of this study was to investigate the performance of a spectral-transformation wave retrieval algorithm and confirm the accuracy of wave retrieval from C-band Chinese Gaofen-3 (GF-3) Synthetic Aperture Radar (SAR) images. More than 200 GF-3 SAR images of the coastal China Sea and the Japan Sea for dates from January to July 2020 were acquired in the Quad-Polarization Strip (QPS) mode. The images had a swath of 30 km and a spatial resolution of 8 m pixel size. They were processed to retrieve Significant Wave Height (SWH), which is simulated from a numerical wave model called Simulating WAves Nearshore (SWAN). The first-guess spectrum is essential to the accuracy of Synthetic Aperture Radar (SAR) wave spectrum retrieval. Therefore, we proposed a wave retrieval scheme combining the theocratic-based Max Planck Institute Algorithm (MPI), a Semi-Parametric Retrieval Algorithm (SPRA), and the Parameterized First-guess Spectrum Method (PFSM), in which a full wave-number spectrum and a non-empirical ocean spectrum proposed by Elfouhaily are applied. The PFSM can be driven using the wind speed without calculating the dominant wave phase speed. Wind speeds were retrieved using a Vertical-Vertical (VV) polarized geophysical model function C-SARMOD2. The proposed algorithm was implemented for all collected SAR images. A comparison of SAR-derived wind speeds with European Center for Medium-Range Weather Forecasts (ECMWF) ERA-5 data showed a 1.95 m/s Root-Mean-Squared Error (RMSE). The comparison of retrieved SWH with SWAN-simulated results demonstrated a 0.47 m RMSE, which is less than the 0.68 m RMSE of SWH when using the PFSM algorithm.Output Status: Forthcoming/Available Onlin

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    Analysis of waves observed by synthetic aperture radar across ocean fronts

    Get PDF
    In this study, synthetic aperture radar (SAR) imaging of waves across ocean fronts was investigated using C-band Sentinel-1 VV-polarized SAR imagery collected over the Yangtze and the Zhujiang estuaries. The presence of ocean fronts in the study area was confirmed by collocated sea surface temperature (SST) data provided by the Advanced Very High Resolution Radiometer (AVHRR) and sea surface current information from the National Ocean Partnership Program (NOPP) based on the HYbrid Coordinate Ocean Model (HYCOM). The experimental results revealed that as the current speed increased, the cut-off wavelength (λc) increased as well. The effect of the increasing azimuth cut-off wavelength, however, was relatively weak in terms of variations of the normalized radar cross-section (NRCS), i.e., it was within 2 dB for λc ≤ 60 m. Hence, it was weaker than the NRCS variation related to SST. Larger NRCS variations (i.e., within 5 dB) occurred for λc values up to 120 m. In addition, the experimental results also demonstrated that the parameterized first-guess spectrum method (PFSM) wave retrieval performance was affected by ocean fronts. In particular, overestimations occurred when ocean fronts were present and λc was < 100

    Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements

    Get PDF
    This book is a reprint of the Special Issue entitled "Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements" that was published in Remote Sensing, MDPI. It provides insights into both core technical challenges and some selected critical applications of satellite remote sensing image analytics

    Semi-Empirical Algorithm for Wind Speed Retrieval from Gaofen-3 Quad-Polarization Strip Mode SAR Data

    Get PDF
    Synthetic aperture radar (SAR) is a suitable tool to obtain reliable wind retrievals with high spatial resolution. The geophysical model function (GMF), which is widely employed for wind speed retrieval from SAR data, describes the relationship between the SAR normalized radar cross-section (NRCS) at the copolarization channel (vertical-vertical and horizontal-horizontal) and a wind vector. SAR-measured NRCS at cross-polarization channels (horizontal-vertical and vertical-horizontal) correlates with wind speed. In this study, a semi-empirical algorithm is presented to retrieve wind speed from the noisy Chinese Gaofen-3 (GF-3) SAR data with noise-equivalent sigma zero correction using an empirical function. GF-3 SAR can acquire data in a quad-polarization strip mode, which includes cross-polarization channels. The semi-empirical algorithm is tuned using acquisitions collocated with winds from the European Center for Medium-Range Weather Forecasts. In particular, the proposed algorithm includes the dependences of wind speed and incidence angle on cross-polarized NRCS. The accuracy of SAR-derived wind speed is around 2.10 m s-1 root mean square error, which is validated against measurements from the Advanced Scatterometer onboard the Metop-A/B and the buoys from the National Data Buoy Center of the National Oceanic and Atmospheric Administration. The results obtained by the proposed algorithm considering the incidence angle in a GMF are relatively more accurate than those achieved by other algorithms. This work provides an alternative method to generate operational wind products for GF-3 SAR without relying on ancillary data for wind direction

    Earth resources: A continuing bibliography with indexes (issue 62)

    Get PDF
    This bibliography lists 544 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1989. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis
    • …
    corecore