1,606 research outputs found

    Managing Operational Efficiency And Health Outcomes At Outpatient Clinics Through Effective Scheduling

    Get PDF
    A variety of studies have documented the substantial deficiencies in the quality of health care delivered across the United States. Attempts to reform the United States health care system in the 1980s and 1990s were inspired by the system\u27s inability to adequately provide access, ensure quality, and restrain costs, but these efforts had limited success. In the era of managed care, access, quality, and costs are still challenges, and medical professionals are increasingly dissatisfied. In recent years, appointment scheduling in outpatient clinics has attracted much attention in health care delivery systems. Increase in demand for health care services as well as health care costs are the most important reasons and motivations for health care decision makers to improve health care systems. The goals of health care systems include patient satisfaction as well as system utilization. Historically, less attention was given to patient satisfaction compared to system utilization and conveniences of care providers. Recently, health care systems have started setting goals regarding patient satisfaction and improving the performance of the health system by providing timely and appropriate health care delivery. In this study we discuss methods for improving patient flow through outpatient clinics considering effective appointment scheduling policies by applying two-stage Stochastic Mixed-Integer Linear Program Model (two-stage SMILP) approaches. Goal is to improve the following patient flow metrics: direct wait time (clinic wait time) and indirect wait time considering patient’s no-show behavior, stochastic server, follow-up surgery appointments, and overbooking. The research seeks to develop two models: 1) a method to optimize the (weekly) scheduling pattern for individual providers that would be updated at regular intervals (e.g., quarterly or annually) based on the type and mix of services rendered and 2) a method for dynamically scheduling patients using the weekly scheduling pattern. Scheduling templates will entertain the possibility of arranging multiple appointments at once. The aim is to increase throughput per session while providing timely care, continuity of care, and overall patient satisfaction as well as equity of resource utilization. First, we use risk-neutral two-stage stochastic programming model where the objective function considers the expected value as a performance criterion in the selection of random variables like total waiting times and next, we expand the model formulation to mean-risk two-stage stochastic programming in which we investigate the effect of considering a risk measure in the model. We apply Conditional-Value-at-Risk (CVaR) as a risk measure for the two-stage stochastic programming model. Results from testing our models using data inspired by real-world OBGYN clinics suggest that the proposed formulations can improve patient satisfaction through reduced direct and indirect waiting times without compromising provider utilization

    Integrated Scheduling Problems in Healthcare and Logistics

    Get PDF
    Scheduling is one of the important components of operation management in different services. The goal of scheduling is to allocate limited available resources over time for performing a set of activities such that one or more objectives are optimized. In this thesis, we study several interesting applications of scheduling in health care and logistics. We present several formulations and algorithms to efficiently solve the scheduling problems that arise in these areas. We first study static and dynamic variants of a multi-appointment, multi-stage outpatient scheduling problem that arises in oncology clinics offering chemotherapy treatments. We present two integer programming formulations that integrate numerous scheduling decisions, features, and objectives of a major outpatient cancer treatment clinic in Canada. We also develop integrated and sequential scheduling strategies for the dynamic case in which arriving requests are processed at specific points of time. The results of computational experiments show that the proposed scheduling strategies can achieve significant improvements with respect to the several performance measures compared to the current scheduling procedure used at the clinic. We next present a daily outpatient appointment scheduling problem that simultaneously determines the start times of consultation and chemotherapy treatment appointments for different types of patients in an oncology clinic under uncertain treatment times. We formulate this stochastic problem using two two-stage stochastic programming models. We also propose a sample average approximation algorithm to obtain high quality feasible solutions. We use an efficient specialized algorithm that quickly evaluates any given first-stage solution for a large number of scenarios. We perform several computational experiments to compare the performance of proposed two-stage stochastic programming models. In the next part of the experiments, we show that the quality of the first-stage solutions obtained by the sample average approximation is significantly higher than those of the expected value problem, and the value of stochastic solution is extremely high specially for higher degrees of uncertainty. Finally, we address two variants of a cross-dock scheduling problem with handling times that simultaneously determines dock-door assignments and the scheduling of the trucks. In the general variant of the problem we assume that unit-load transfer times are door dependent, whereas in the specific case variant, unit-load transfer times are considered to be identical for all pairs of doors. We present constraint programming formulations for both variants of the problem, and we compare the performance of these models with mixed integer programming models from the literature. For the specific case, we propose several families of valid inequalities that are then used within a branch-and-cut framework to improve the performance of a time-index model. To solve the general problem efficiently, we also develop an approximate algorithm that first solves the specific case problem with the developed branch-and-cut algorithm to obtain a valid lower-bound, and then applies a matheuristic to obtain a valid upper-bound for the general problem and to compute the optimality gap. According to the computational experiments, we show that the proposed formulations and algorithms are able to solve the studied problems efficiently, and they outperform other models and heuristics that were previously developed for the problem in the literature

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    Stochastic Optimization Approaches for Outpatient Appointment Scheduling under Uncertainty

    Full text link
    Outpatient clinics (OPCs) are quickly growing as a central component of the healthcare system. OPCs offer a variety of medical services, with benefits such as avoiding inpatient hospitalization, improving patient safety, and reducing costs of care. However, they also introduce new challenges for appointment planning and scheduling, primarily due to the heterogeneity and variability in patient characteristics, multiple competing performance criteria, and the need to deliver care within a tight time window. Ignoring uncertainty, especially when designing appointment schedules, may have adverse outcomes such as patient delays and clinic overtime. Conversely, accounting for uncertainty when scheduling has the potential to create more efficient schedules that mitigate these adverse outcomes. However, many challenges arise when attempting to account for uncertainty in appointment scheduling problems. In this dissertation, we propose new stochastic optimization models and approaches to address some of these challenges. Specifically, we study three stochastic outpatient scheduling problems with broader applications within and outside of healthcare and propose models and methods for solving them. We first consider the problem of sequencing a set of outpatient procedures for a single provider (where each procedure has a known type and a random duration that follows a known probability distribution), minimizing a weighted sum of waiting, idle time, and overtime. We elaborate on the challenges of solving this complex stochastic, combinatorial, and multi-criteria optimization problem and propose a new stochastic mixed-integer programming model that overcomes these challenges in contrast to the existing models in the literature. In doing so, we show the art of, and the practical need for, good mathematical formulations in solving real-world scheduling problems. Second, we study a stochastic adaptive outpatient scheduling problem which incorporates the patients’ random arrival and service times. Finding a provably-optimal solution to this problem requires solving a MSMIP, which in turn must optimize a scheduling problem over each random arrival and service time for each stage. Given that this MSMIP is intractable, we present two approximation based on two-stage stochastic mixed-integer models and a Monte Carlo Optimization approach. In a series of numerical experiments, we demonstrate the near-optimality of the appointment order (AO) rescheduling policy, which requires that patients are served in the order of their scheduled appointments, in many parameter settings. We also identify parameter settings under which the AO policy is suboptimal. Accordingly, we propose an alternative swap-based policy that improves the solution of such instances. Finally, we consider the outpatient colonoscopy scheduling problem, recognizing the impact of pre-procedure bowel preparation (prep) quality on the variability of colonoscopy duration. Data from a large OPC indicates that colonoscopy durations are bimodal, i.e., depending on the prep quality they can follow two different probability distributions, one for those with adequate prep and the other for those with inadequate prep. We define a distributionally robust outpatient colonoscopy scheduling (DRCOS) problem that seeks optimal appointment sequence and schedule to minimize the worst-case weighted expected sum of patient waiting, provider idling, and provider overtime, where the worst-case is taken over an ambiguity set characterized through the known mean and support of the prep quality and durations. We derive an equivalent mixed-integer linear programming formulation to solve DRCOS. Finally, we present a case study based on extensive numerical experiments in which we draw several managerial insights into colonoscopy scheduling.PHDIndustrial & Operations EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/151727/1/ksheha_1.pdfDescription of ksheha_1.pdf : Restricted to UM users only

    Essays On Stochastic Programming In Service Operations Management

    Get PDF
    Deterministic mathematical modeling is a branch of optimization that deals with decision making in real-world problems. While deterministic models assume that data and parameters are known, these numbers are often unknown in the real world applications.The presence of uncertainty in decision making can make the optimal solution of a deterministic model infeasible or sub-optimal. On the other hand, stochastic programming approach assumes that parameters and coefficients are unknown and only their probability distribution can be estimated. Although stochastic programming could include uncertainties in objective function and/or constraints, we only study problems that the goal of stochastic programming is to maximize (minimize) the expectation of the objective function of random variables. Stochastic programming has a wide range of application in manufacturing production planning, machine scheduling, dairy farm expansion planning, asset liability management, traffic management, and automobile dealership inventory management that involve uncertainty in decision making. One limitation of stochastic programming is that considering uncertainty in mathematical modeling often leads to a large-scale programming problem. The most widely used stochastic programming model is two-stage stochastic programming. In this model, first-stage decision variables are determined before observing the realization of uncertainties and second-stage decision variables are selected after exposing first-stage variables into the uncertainties. The goal is to determine the value of first-stage decisions in a way to maximize (minimize) the expected value of second-stage objective function. 1.1 Motivation for Designing Community-Aware Charging Network for Electric Vehicles Electric vehicles (EVs) are attracting more and more attentions these days due to increase concern about global warming and future shortage of fossil fuels. These vehicles have potential to reduce greenhouse gas emissions, improve public health condition by reducing air pollution and improving sustainability, and addressing diversication of transportation energy feedstock. Governments and policy makers have proposed two types of policy incentives in order to encourage consumers to buy an EV: direct incentives and indirect incentives. Direct incentives are those that have direct monetary value to consumers and include purchase subsidies, license tax/fee reductions, Electric Vehicle Supply Equipment (EVSE) financing, free electricity, free parking and emission test exemptions. On the other hand, indirect incentives are the ones that do not have direct monetary value and consist of high-occupancy vehicle access, emissions testing exemption time savings, and public charger availability. Lack of access to public charging network is considered to be a major barrier in adoption of EVs [38]. Access to public charging infrastructure will provide confidence for EV owners to drive longer distances without going out of charge and encourage EV ownership in the community. The current challenge for policy makers and city planners in installing public charging infrastructure is determining the location of these charging service stations, number of required stations and level of charging since the technology is still in its infancy and the installation cost is high. Since recharging of EV battery takes more time than refueling conventional vehicles, parking lots and garages are considered as potential locations for installing charging stations. The aim of this research is to develop a mathematical programming model to find the optimal locations with potentially high utilization rate for installing community-aware public EV charging infrastructure in order to improve accessibility to charging service and community livability metrics. In designing such charging network, uncertainties such as EV market share, state of battery charge at the time of arrival, driver’s willingness to charge EV away from home, arrival time to final destination, driver’s activity duration (parking duration), and driver’s walking distance preference play major role. Incorporating these uncertainties in the model, we propose a two-stage stochastic programming approach to determine the location and capacity of public EV charging network in a community. 1.2 Motivation for Managing Access to Care at Primary Care Clinics Patient access to care along with healthcare efficiency and quality of service are dimensions of health system performance measurement [1]. Improving access to primary care is a major step of having a high-performing health care system. However, many patients are struggling to get an in-time appointment with their own primary care provider (PCP). Even two years aer health insurance coverage was expanded, new patients have to wait 82% longer to get an internal-medicine appointment. A national survey shows that percentage of patients that need urgent care and could not get an appointment increased from 53% to 57% between 2006 and 2011 [30]. This delay may negatively impact health status of patients and may even lead to death. Patients that cannot get an appointment with their PCP may seek care with other providers or in emergency departments which will decrease continuity of care and increase total cost of health system. The main issue behind access problem is the imbalance between provider capacity and patient demand. While provider panel size is already large, the shortage in primary care providers and increasing number of patients mean that providers have to increase their panel size and serve more patients which will potentially lead to lower access to primary care. The ratio of adult primary care providers to population is expected to drop by 9% between 2005 and 2020 [12]. Moreover, patient flow analysis can increase efficiency of healthcare system and quality of health service by increasing patient and provider satisfaction through better resource allocation and utilization [39]. Effective resource allocation will smooth patient ow and reduce waste which will in turn results in better access to care. One way to control patient flow in clinic is managing appointment supply through appointment scheduling system. A well-designed appointment scheduling system can decrease appointment delay and waiting time in clinic for patients and idle time and/or overtime for physicians at the same time and increase their satisfaction. Appointment scheduling requires to make a balance between patient needs and facility resources [13]. The purpose of this study is to gain a better understanding for managing access to care in primary care outpatient clinics through operations management research. As a result of this under standing, we develop appointment scheduling models using two-stage stochastic programming to improve access while maintaining high levels of provider capacity utilization and improving patient flow in clinic by leveraging uncertainties in patient demand, patient no-show and provider service time variability

    A stochastic programming approach for chemotherapy appointment scheduling

    Get PDF
    Chemotherapy appointment scheduling is a challenging problem due to the uncertainty in pre-medication and infusion durations. In this paper, we formulate a two-stage stochastic mixed integer programming model for the chemotherapy appointment scheduling problem under limited availability and number of nurses and infusion chairs. The objective is to minimize the expected weighted sum of nurse overtime, chair idle time, and patient waiting time. The computational burden to solve real-life instances of this problem to optimality is significantly high, even in the deterministic case. To overcome this burden, we incorporate valid bounds and symmetry breaking constraints. Progressive hedging algorithm is implemented in order to solve the improved formulation heuristically. We enhance the algorithm through a penalty update method, cycle detection and variable fixing mechanisms, and a linear approximation of the objective function. Using numerical experiments based on real data from a major oncology hospital, we compare our solution approach with several scheduling heuristics from the relevant literature, generate managerial insights related to the impact of the number of nurses and chairs on appointment schedules, and estimate the value of stochastic solution to assess the significance of considering uncertainty

    A survey of health care models that encompass multiple departments

    Get PDF
    In this survey we review quantitative health care models to illustrate the extent to which they encompass multiple hospital departments. The paper provides general overviews of the relationships that exists between major hospital departments and describes how these relationships are accounted for by researchers. We find the atomistic view of hospitals often taken by researchers is partially due to the ambiguity of patient care trajectories. To this end clinical pathways literature is reviewed to illustrate its potential for clarifying patient flows and for providing a holistic hospital perspective

    Chemotherapy Outpatient Scheduling at the Segal Cancer Center Using Mixed Integer Programming Models

    Get PDF
    Appointment scheduling in an outpatient oncology clinic is a daunting task due to the stochastic and dynamic nature of the appointment requests. Each patient has a different trajectory and varying requirements of appointment length time that differ from one another. It is not possible to predict the amount of time required nor the amount of patients that will be treated in a day. Due to the oncologist's prescribed regimen, there is almost no flexibility to choose an appointment date because of the strict resting period required between treatments to achieve the best curative outcome. The purpose of this thesis is to demonstrate the benefit of using integer programming to model and to solve some of the challenges faced by the Segal Cancer Center of the Jewish General Hospital in Montreal, Quebec, when designing appointment schedules. We study two scheduling problems. The chemotherapy outpatient scheduling problem determines the allocation of patient appointment to days and the determination of appointment start time on those days for a planning horizon of four weeks. The objectives are to maximize the adherence to protocol, maximize the proper assignment of primary nurses to patients and minimize the completion date of treatments. With this model, the clinic can schedule appointment requests as they arise. When taking an integrated approach to solve the oncology clinic multi-stage scheduling problem, it is possible to coordinate the clinic's departments and determine the start time of each activity required by patients no matter their trajectory through the system. Due to the minimization of patient wait time and the completion time of their visit, there will be a better coordination within the clinic, reduction of staff idle time and a balance of resource utilization. Most importantly, it will ensure the completion of tasks within a single day, eliminating the current two-days scheduling policy of the Segal Cancer Center. The findings of this thesis will facilitate decision making in healthcare scheduling, improve the service level of oncology clinics and serve as a workforce management tool
    corecore