13,585 research outputs found

    Distributed Coverage Area Reporting for Wireless Sensor Networks

    Get PDF
    In order to efficiently deal with subscriptions or other location dependent information, it is key that the wireless sensor network informs the gateways what geographical area is serviced by which gateway. The gateways are then able to e.g. efficiently route subscriptions which are only valid in particular regions of the deployment. \ud \ud In our distributed approach of establishing a description of WSN coverage area per gateway, we let nodes keep track of the convex hull of the coverage area. In this way, gateways are efficiently informed of the service areas, while we limit the amount of information each node needs to store, transmit and receive

    Combined Coverage Area Reporting and Geographical Routing in Wireless Sensor-Actuator Networks for Cooperating with Unmanned Aerial Vehicles

    Get PDF
    In wireless sensor network (WSN) applications with multiple gateways, it is key to route location dependent subscriptions efficiently at two levels in the system. At the gateway level, data sinks must not waste the energy of the WSN by injecting subscriptions that are not relevant for the nodes in their coverage area and at WSN level, energy-efficient delivery of subscriptions to target areas is required. In this paper, we propose a mechanism in which (1) the WSN provides an accurate and up-to-date coverage area description to gateways and (2) the wireless sensor network re-uses the collected coverage area information to enable efficient geographical routing of location dependent subscriptions and other messages. The latter has a focus on routing of messages injected from sink nodes to nodes in the region of interest. Our proposed mechanisms are evaluated in simulation

    Self-Organized Routing For Wireless Micro-Sensor Networks

    No full text
    In this paper we develop an energy-aware self-organized routing algorithm for the networking of simple battery-powered wireless micro-sensors (as found, for example, in security or environmental monitoring applications). In these networks, the battery life of individual sensors is typically limited by the power required to transmit their data to a receiver or sink. Thus effective network routing algorithms allow us to reduce this power and extend both the lifetime and the coverage of the sensor network as a whole. However, implementing such routing algorithms with a centralized controller is undesirable due to the physical distribution of the sensors, their limited localization ability and the dynamic nature of such networks (given that sensors may fail, move or be added at any time and the communication links between sensors are subject to noise and interference). Against this background, we present a distributed mechanism that enables individual sensors to follow locally selfish strategies, which, in turn, result in the self-organization of a routing network with desirable global properties. We show that our mechanism performs close to the optimal solution (as computed by a centralized optimizer), it deals adaptively with changing sensor numbers and topology, and it extends the useful life of the network by a factor of three over the traditional approach
    corecore