285 research outputs found

    Hashing for Multimedia Similarity Modeling and Large-Scale Retrieval

    Get PDF
    In recent years, the amount of multimedia data such as images, texts, and videos have been growing rapidly on the Internet. Motivated by such trends, this thesis is dedicated to exploiting hashing-based solutions to reveal multimedia data correlations and support intra-media and inter-media similarity search among huge volumes of multimedia data. We start by investigating a hashing-based solution for audio-visual similarity modeling and apply it to the audio-visual sound source localization problem. We show that synchronized signals in audio and visual modalities demonstrate similar temporal changing patterns in certain feature spaces. We propose to use a permutation-based random hashing technique to capture the temporal order dynamics of audio and visual features by hashing them along the temporal axis into a common Hamming space. In this way, the audio-visual correlation problem is transformed into a similarity search problem in the Hamming space. Our hashing-based audio-visual similarity modeling has shown superior performances in the localization and segmentation of sounding objects in videos. The success of the permutation-based hashing method motivates us to generalize and formally define the supervised ranking-based hashing problem, and study its application to large-scale image retrieval. Specifically, we propose an effective supervised learning procedure to learn optimized ranking-based hash functions that can be used for large-scale similarity search. Compared with the randomized version, the optimized ranking-based hash codes are much more compact and discriminative. Moreover, it can be easily extended to kernel space to discover more complex ranking structures that cannot be revealed in linear subspaces. Experiments on large image datasets demonstrate the effectiveness of the proposed method for image retrieval. We further studied the ranking-based hashing method for the cross-media similarity search problem. Specifically, we propose two optimization methods to jointly learn two groups of linear subspaces, one for each media type, so that features\u27 ranking orders in different linear subspaces maximally preserve the cross-media similarities. Additionally, we develop this ranking-based hashing method in the cross-media context into a flexible hashing framework with a more general solution. We have demonstrated through extensive experiments on several real-world datasets that the proposed cross-media hashing method can achieve superior cross-media retrieval performances against several state-of-the-art algorithms. Lastly, to make better use of the supervisory label information, as well as to further improve the efficiency and accuracy of supervised hashing, we propose a novel multimedia discrete hashing framework that optimizes an instance-wise loss objective, as compared to the pairwise losses, using an efficient discrete optimization method. In addition, the proposed method decouples the binary codes learning and hash function learning into two separate stages, thus making the proposed method equally applicable for both single-media and cross-media search. Extensive experiments on both single-media and cross-media retrieval tasks demonstrate the effectiveness of the proposed method

    Learning compact hashing codes with complex objectives from multiple sources for large scale similarity search

    Get PDF
    Similarity search is a key problem in many real world applications including image and text retrieval, content reuse detection and collaborative filtering. The purpose of similarity search is to identify similar data examples given a query example. Due to the explosive growth of the Internet, a huge amount of data such as texts, images and videos has been generated, which indicates that efficient large scale similarity search becomes more important.^ Hashing methods have become popular for large scale similarity search due to their computational and memory efficiency. These hashing methods design compact binary codes to represent data examples so that similar examples are mapped into similar codes. This dissertation addresses five major problems for utilizing supervised information from multiple sources in hashing with respect to different objectives. Firstly, we address the problem of incorporating semantic tags by modeling the latent correlations between tags and data examples. More precisely, the hashing codes are learned in a unified semi-supervised framework by simultaneously preserving the similarities between data examples and ensuring the tag consistency via a latent factor model. Secondly, we solve the missing data problem by latent subspace learning from multiple sources. The hashing codes are learned by enforcing the data consistency among different sources. Thirdly, we address the problem of hashing on structured data by graph learning. A weighted graph is constructed based on the structured knowledge from the data. The hashing codes are then learned by preserving the graph similarities. Fourthly, we address the problem of learning high ranking quality hashing codes by utilizing the relevance judgments from users. The hashing code/function is learned via optimizing a commonly used non-smooth non-convex ranking measure, NDCG. Finally, we deal with the problem of insufficient supervision by active learning. We propose to actively select the most informative data examples and tags in a joint manner based on the selection criteria that both the data examples and tags should be most uncertain and dissimilar with each other.^ Extensive experiments on several large scale datasets demonstrate the superior performance of the proposed approaches over several state-of-the-art hashing methods from different perspectives

    Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time to Learn (Extended Abstract)

    Get PDF
    This paper proposes a novel method, Enhanced Discrete Multi-modal Hashing (EDMH), which learns binary codes and hash functions simultaneously from the pairwise similarity matrix of data for large-scale cross-view retrieval. EDMH distinguishes itself from existing methods by considering not just the binarization constraint but also the balance and decorrelation constraints. Although those additional discrete constraints make the optimization problem of EDMH look a lot more complicated, we are actually able to develop a fast iterative learning algorithm in the alternating optimization framework for it, as after introducing a couple of auxiliary variables each subproblem of optimization turns out to have closed-form solutions. It has been confirmed by extensive experiments that EDMH can consistently deliver better retrieval performances than state-of-the-art MH methods at lower computational costs

    Deep Adaptive Feature Embedding with Local Sample Distributions for Person Re-identification

    Full text link
    Person re-identification (re-id) aims to match pedestrians observed by disjoint camera views. It attracts increasing attention in computer vision due to its importance to surveillance system. To combat the major challenge of cross-view visual variations, deep embedding approaches are proposed by learning a compact feature space from images such that the Euclidean distances correspond to their cross-view similarity metric. However, the global Euclidean distance cannot faithfully characterize the ideal similarity in a complex visual feature space because features of pedestrian images exhibit unknown distributions due to large variations in poses, illumination and occlusion. Moreover, intra-personal training samples within a local range are robust to guide deep embedding against uncontrolled variations, which however, cannot be captured by a global Euclidean distance. In this paper, we study the problem of person re-id by proposing a novel sampling to mine suitable \textit{positives} (i.e. intra-class) within a local range to improve the deep embedding in the context of large intra-class variations. Our method is capable of learning a deep similarity metric adaptive to local sample structure by minimizing each sample's local distances while propagating through the relationship between samples to attain the whole intra-class minimization. To this end, a novel objective function is proposed to jointly optimize similarity metric learning, local positive mining and robust deep embedding. This yields local discriminations by selecting local-ranged positive samples, and the learned features are robust to dramatic intra-class variations. Experiments on benchmarks show state-of-the-art results achieved by our method.Comment: Published on Pattern Recognitio

    New ideas and trends in deep multimodal content understanding: a review

    Get PDF
    The focus of this survey is on the analysis of two modalities of multimodal deep learning: image and text. Unlike classic reviews of deep learning where monomodal image classifiers such as VGG, ResNet and Inception module are central topics, this paper will examine recent multimodal deep models and structures, including auto-encoders, generative adversarial nets and their variants. These models go beyond the simple image classifiers in which they can do uni-directional (e.g. image captioning, image generation) and bi-directional (e.g. cross-modal retrieval, visual question answering) multimodal tasks. Besides, we analyze two aspects of the challenge in terms of better content understanding in deep multimodal applications. We then introduce current ideas and trends in deep multimodal feature learning, such as feature embedding approaches and objective function design, which are crucial in overcoming the aforementioned challenges. Finally, we include several promising directions for future research.Computer Systems, Imagery and Medi
    • …
    corecore