1,386 research outputs found

    A two-stage stochastic integer programming approach to integrated staffing and scheduling with application to nurse management

    Get PDF
    We study the problem of integrated staffing and scheduling under demand uncertainty. This problem is formulated as a two-stage stochastic integer program with mixed-integer recourse. The here-and-now decision is to find initial staffing levels and schedules. The wait-and-see decision is to adjust these schedules at a time closer to the actual date of demand realization. We show that the mixed-integer rounding inequalities for the second-stage problem convexify the recourse function. As a result, we present a tight formulation that describes the convex hull of feasible solutions in the second stage. We develop a modified multicut approach in an integer L-shaped algorithm with a prioritized branching strategy. We generate twenty instances (each with more than 1.3 million integer and 4 billion continuous variables) of the staffing and scheduling problem using 3.5 years of patient volume data from Northwestern Memorial Hospital. Computational results show that the efficiency gained from the convexification of the recourse function is further enhanced by our modifications to the L-shaped method. The results also show that compared with a deterministic model, the two-stage stochastic model leads to a significant cost savings. The cost savings increase with mean absolute percentage errors in the patient volume forecast

    Strategic Nurse Allocation Policies Under Dynamic Patient Demand

    Get PDF
    ABSTRACT STRATEGIC NURSE ALLOCATION POLICIES UNDER DYNAMIC PATIENT DEMAND by Osman T. Aydas The University of Wisconsin-Milwaukee, 2017 Under the Supervision of Professor Anthony D. Ross Several studies have shown a strong association between nurse staffing and patient outcomes. When a nursing unit is chronically short-staffed, nurses must maintain an intense pace to ensure that patients receive timely care. Over time this can result in nurse burnout, as well as dissatisfied patients and even medical errors. Improved accuracy in the allocation of nursing staff can mitigate these operational risks and improve patient outcomes. Nursing care is identified as the single biggest factor in both the cost of hospital care and patient satisfaction. Yet, there is widespread dissatisfaction with the current methods of determining nurse staffing levels, including the most common one of using minimum nurse-to-patient ratios. Nurse shortage implications go beyond healthcare quality, extending to health economics as well. In addition, implementation of mandatory nurse-to-patient ratios in some states creates a risk of under- or over-estimating required nurse resources. With this motivation, this dissertation aims to develop methodologies that generate feasible six-week nurse schedules and efficiently assign nurses from various profiles to these schedules while controlling staffing costs and understaffing ratios in the medical unit. First, we develop and test various medium-term staff allocation approaches using mixed-integer optimization and compare their performance with respect to a hypothetical full information scenario. Second, using stochastic integer programming approach, we develop a short-term staffing level adjustment model under a sizable list of patient admission scenarios. We begin by providing an overview of the organization of the dissertation. Chapter 1 presents the problem context and we provide research questions for this dissertation. Chapter 2 provides a review of the literature on nurse staffing and scheduling specifically from the Operations Management journals. We introduce the challenges of nursing care and nurse scheduling practices. We identify major research areas and solution approaches. This is followed by a discussion of the complexities associated with computing nursing requirements and creating rosters. Staffing requirements are the result of a complex interaction between care-unit sizes, nurse-to-patient ratios, bed census distributions, and quality-of-care requirements. Therefore, we review the literature on nursing workload measurement approaches because workloads depend highly on patient arrivals and lengths of stay, both of which can vary greatly. Thus, predicting these workloads and staffing nurses accordingly are essential to guaranteeing quality of care in a cost-effective manner. For completeness, a brief review of the literature on workforce planning and scheduling that is linked to the nurse staffing and scheduling problem is also provided. Chapter 3 develops a framework for estimating the daily number of nurses required in Intensive Care Units (ICUs). Many patient care units, including ICUs, find it difficult to accurately estimate the number of nurses needed. One factor contributing to this difficulty is not having a decision support tool to understand the distribution of admissions to healthcare facilities. We statistically evaluate the existing staff allocation system of an ICU using clinical operational data, then develop a predictive model for estimating the number of admissions to the unit. We analyze clinical operational data covering 44 months for three wards of a pediatric ICU. The existing staff allocation model does not accurately estimate the required number of nurses required. This is due in part to not understanding the pattern and frequency of admissions, particularly those which are not known 12 hours in advance. We show that these “unknown” admissions actually follow a Poisson distribution. Thus, we can more accurately estimate the number of admissions overall. Analytical predictive methods that complement intuition and experience can help to decrease unplanned requirements for nurses and recommend more efficient nurse allocations. The model developed here can be inferred to estimate admissions for other intensive care units, such as pediatric facilities. Chapter 4 examines an integrated nurse staffing and scheduling model for a Pediatric Intensive Care Unit (PICU). This model is targeted to recommend initial staffing plans and schedules for a six-week horizon given a variety of nurse groups and nursing shift assignment types in the PICU. Nurse rostering is an NP-hard combinatorial problem, which makes it extremely difficult to efficiently solve life-sized problems due to their complexity. Usually, real problem instances have complicated work rules related to safety and quality of service issues, as well as preferences of the personnel. To avoid the size and complexity limitations, we generate feasible nurse schedules for the full-time equivalent (FTE) nurses, using algorithms that will be employed in the mixed-integer programming models we develop. Pre-generated schedules eliminate the increased number of constraints, and reduce the number of decision variables of the integrated nurse staffing and scheduling model. We also include a novel methodology for estimating nurse workloads by considering the patient, and individual patient’s acuity, and activity in the unit. When the nursing administration prepares the medium-term nurse schedules for the next staffing cycle (six weeks in our study), one to two months before the actual patient demand realizations, it typically uses a general average staffing level for the nursing care needs in the medical units. Using our mixed-integer optimization model, we examine fixed vs. dynamic medium-term nurse staffing and scheduling policy options for the medical units. In the fixed staffing option, the medical unit is staffed by a fixed number of nurses throughout the staffing horizon. In the dynamic staffing policy, we propose, historical patient demand data enables us to suggest a non-stationary staffing scheme. We compare the performance of both nurse allocation policy options, in terms of cost savings and understaffing ratios, with the optimal staffing scheme reached by the actual patient data. As a part of our experimental design, we evaluate our optimization model for the three medical units of the PICU in the “as-is” state. In Chapter 5, we conduct two-stage short-term staffing adjustments for the upcoming nursing shift. Our proposed adjustments are first used at the beginning of each nursing shift for the upcoming 4-hour shift. Then, after observing actual patient demand for nursing at the start of the next shift, we make our final staffing adjustments to meet the patient demand for nursing. We model six different adjustment options for the two-stage stochastic programming model (five options available as first-stage decisions and one option available as the second-stage decision). Because the adjustment horizon is less than 12 hours, the current patient census, patient acuity, and the number of scheduled admissions/discharges in the current and upcoming shift are known to the unit nurse manager. We develop a two-stage stochastic integer programming model which will minimize total nurse staffing costs (and the cost of adjustments to the original schedules developed in the medium-term planning phase) while ensuring adequate coverage of nursing demand. Chapter 6 provides conclusions from the study and identify both limitations and future research directions

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    An Optimisation-based Framework for Complex Business Process: Healthcare Application

    Get PDF
    The Irish healthcare system is currently facing major pressures due to rising demand, caused by population growth, ageing and high expectations of service quality. This pressure on the Irish healthcare system creates a need for support from research institutions in dealing with decision areas such as resource allocation and performance measurement. While approaches such as modelling, simulation, multi-criteria decision analysis, performance management, and optimisation can – when applied skilfully – improve healthcare performance, they represent just one part of the solution. Accordingly, to achieve significant and sustainable performance, this research aims to develop a practical, yet effective, optimisation-based framework for managing complex processes in the healthcare domain. Through an extensive review of the literature on the aforementioned solution techniques, limitations of using each technique on its own are identified in order to define a practical integrated approach toward developing the proposed framework. During the framework validation phase, real-time strategies have to be optimised to solve Emergency Department performance issues in a major hospital. Results show a potential of significant reduction in patients average length of stay (i.e. 48% of average patient throughput time) whilst reducing the over-reliance on overstretched nursing resources, that resulted in an increase of staff utilisation between 7% and 10%. Given the high uncertainty in healthcare service demand, using the integrated framework allows decision makers to find optimal staff schedules that improve emergency department performance. The proposed optimum staff schedule reduces the average waiting time of patients by 57% and also contributes to reduce number of patients left without treatment to 8% instead of 17%. The developed framework has been implemented by the hospital partner with a high level of success

    A multi-method scheduling framework for medical staff

    Get PDF
    Hospital planning teams are always concerned with optimizing staffing and scheduling decisions in order to improve hospital performance, patient experience, and staff satisfaction. A multi-method approach including data analytics, modeling and simulation, machine learning, and optimization is proposed to provide a framework for smart and applicable solutions for staffing and shift scheduling. Factors regarding patients, staff, and hospitals are considered in the decision. This framework is piloted using the Emergency Department(ED) of a leading university hospital in Dublin. The optimized base staffing patterns and shift schedules actively contributed to solving ED overcrowding problem and reduced the average waiting time for patients by 43% compared to the current waiting time of discharged patients. The reduction was achieved by optimizing the staffing level and then determining the shift schedule that minimized the understaffing and overstaffing of the personnel need to meet patient demand

    An Integrated Framework for Staffing and Shift Scheduling in Hospitals

    Get PDF
    Over the years, one of the main concerns confronting hospital management is optimising the staffing and scheduling decisions. Consequences of inappropriate staffing can adversely impact on hospital performance, patient experience and staff satisfaction alike. A comprehensive review of literature (more than 1300 journal articles) is presented in a new taxonomy of three dimensions; problem contextualisation, solution approach, evaluation perspective and uncertainty. Utilising Operations Research methods, solutions can provide a positive contribution in underpinning staffing and scheduling decisions. However, there are still opportunities to integrate decision levels; incorporate practitioners view in solution architectures; consider staff behaviour impact, and offer comprehensive applied frameworks. Practitioners’ perspectives have been collated using an extensive exploratory study in Irish hospitals. A preliminary questionnaire has indicated the need of effective staffing and scheduling decisions before semi-structured interviews have taken place with twenty-five managers (fourteen Directors and eleven head nurses) across eleven major acute Irish hospitals (about 50% of healthcare service deliverers). Thematic analysis has produced five key themes; demand for care, staffing and scheduling issues, organisational aspects, management concern, and technology-enabled. In addition to other factors that can contribute to the problem such as coordination, environment complexity, understaffing, variability and lack of decision support. A multi-method approach including data analytics, modelling and simulation, machine learning, and optimisation has been employed in order to deliver adequate staffing and shift scheduling framework. A comprehensive portfolio of critical factors regarding patients, staff and hospitals are included in the decision. The framework was piloted in the Emergency Department of one of the leading and busiest university hospitals in Dublin (Tallaght Hospital). Solutions resulted from the framework (i.e. new shifts, staff workload balance, increased demands) have showed significant improvement in all key performance measures (e.g. patient waiting time, staff utilisation). Management team of the hospital endorsed the solution framework and are currently discussing enablers to implement the recommendation

    An Optimization Model for Integrated Capacity Management and Bed Allocation Planning of Hospitals

    Get PDF
    Hospitals are facing with increasing demands of unlimited needs of people health. On the other hand, due to the rising cost of healthcare services, hospitals need to put more effort in order to overcome these two problems. This paper deals with proposing an integrated strategy for solving these problems. We address an integer optimization model which integrate capacity staff management problem and bed allocation planning problem. We solve the model using a direct approach, based on the notion of superbasic variables

    A stochastic integer programming approach to reserve staff scheduling with preferences

    Full text link
    De nos jours, atteindre un niveau Ă©levĂ© de satisfaction des employĂ©s Ă  l’intĂ©rieur d’horaires efficients est une tĂąche importante et ardue Ă  laquelle les compagnies font face. Dans ce travail, nous abordons une nouvelle variante du problĂšme de crĂ©ation d’horaire de personnel face Ă  une demande inconnue, en tenant compte de la satisfaction des employĂ©s via l’incertitude endogĂšne qui dĂ©coule de la combinaison des prĂ©fĂ©rences des employĂ©s envers les horaires, et de ceux qu’ils reçoivent. Nous abordons ce problĂšme dans le contexte de la crĂ©ation d’horaire d’employĂ©s remplaçants, un problĂšme opĂ©rationnel de l’industrie du transport en commun qui n’a pas encore Ă©tĂ© Ă©tudiĂ©, bien qu’assez prĂ©sent dans les compagnies nord-amĂ©ricaines. Pour faire face aux dĂ©fis qu’amĂšnent les deux sources d’incertitude, les absences des employĂ©s rĂ©guliers et des employĂ©s remplaçants, nous modĂ©lisons ce problĂšme en un programme stochastique en nombres entiers Ă  deux Ă©tapes avec recours mixte en nombres entiers. Les dĂ©cisions de premiĂšre Ă©tape consistent Ă  trouver les journĂ©es de congĂ© des employĂ©s remplaçants. Une fois que les absences inconnues des employĂ©s rĂ©guliers sont rĂ©vĂ©lĂ©es, les dĂ©cisions de deuxiĂšme Ă©tape consistent Ă  planifier les tĂąches des employĂ©s remplaçants. Nous incorporons les prĂ©fĂ©rences des employĂ©s remplaçants envers les journĂ©es de congĂ© dans notre modĂšle pour observer Ă  quel point la satisfaction de ces employĂ©s peut affecter leurs propres taux d’absence. Nous validons notre approche sur un an de donnĂ©es de la ville de Los Angeles. Notre travail est prĂ©sentement en cours d’implĂ©mentation chez un fournisseur mondial de solutions logicielles pour les opĂ©rations de transport en commun.Nowadays, reaching a high level of employee satisfaction in efficient schedules is an important and difficult task faced by companies. In this work, we tackle a new variant of the personnel scheduling problem under unknown demand by considering employee satisfaction via endogenous uncertainty depending on the combination of their preferred and received schedules. We address this problem in the context of reserve staff scheduling, an operational problem from the transit industry that has not yet been studied, although rather present in North American transit companies. To handle the challenges brought by the two uncertainty sources, regular employee and reserve employee absences, we formulate this problem as a two-stage stochastic integer program with mixed-integer recourse. The first-stage decisions consist in finding the days off of the reserve employees. After the unknown regular employee absences are revealed, the second-stage decisions are to schedule the reserve staff duties. We incorporate reserve employees’ preferences for days off into the model to examine how employee satisfaction may affect their own absence rates. We validate our approach on one year of data from the city of Los Angeles. Our work is currently being implemented in a world-leader software solutions provider for public transit operations

    A two-stage stochastic program for scheduling and allocating cross-trained workers

    Get PDF
    A two-stage stochastic program is developed for scheduling and allocating cross-trained workers in a multi-department service environment with random demands. The first stage corresponds to scheduling days-off over a time horizon such as a week or month. The second stage is the recourse action that deals with allocating available workers at the beginning of a day to accommodate realized demands. After the general two-stage model is formulated, a special case is introduced for computational testing. The testing helps quantify the value of cross-training as a function of problem characteristics. Results show that cross-training can be more valuable than perfect information, especially when demand uncertainty is high
    • 

    corecore