5,661 research outputs found

    Empirical analysis of BWT-based lossless image compression

    Get PDF
    The Burrows-Wheeler Transformation (BWT) is a text transformation algorithm originally designed to improve the coherence in text data. This coherence can be exploited by compression algorithms such as run-length encoding or arithmetic coding. However, there is still a debate on its performance on images. Motivated by a theoretical analysis of the performance of BWT and MTF, we perform a detailed empirical study on the role of MTF in compressing images with the BWT. This research studies the compression performance of BWT on digital images using different predictors and context partitions. The major interest of the research is in finding efficient ways to make BWT suitable for lossless image compression.;This research studied three different approaches to improve the compression of image data by BWT. First, the idea of preprocessing the image data before sending it to the BWT compression scheme is studied by using different mapping and prediction schemes. Second, different variations of MTF were investigated to see which one works best for Image compression with BWT. Third, the concept of context partitioning for BWT output before it is forwarded to the next stage in the compression scheme.;For lossless image compression, this thesis proposes the removal of the MTF stage from the BWT compression pipeline and the usage of context partitioning method. The compression performance is further improved by using MED predictor on the image data along with the 8-bit mapping of the prediction residuals before it is processed by BWT.;This thesis proposes two schemes for BWT-based image coding, namely BLIC and BLICx, the later being based on the context-ordering property of the BWT. Our methods outperformed other text compression algorithms such as PPM, GZIP, direct BWT, and WinZip in compressing images. Final results showed that our methods performed better than the state of the art lossless image compression algorithms, such as JPEG-LS, JPEG2000, CALIC, EDP and PPAM on the natural images

    A fully embedded two-stage coder for hyperspectral near-lossless compression

    Get PDF
    This letter proposes a near-lossless coder for hyperspectral images. The coding technique is fully embedded and minimizes the distortion in the l2 norm initially and in the l∞ norm subsequently. Based on a two-stage near-lossless compression scheme, it includes a lossy and a near-lossless layer. The novelties are: the observation of the convergence of the entropy of the residuals in the original domain and in the spectral-spatial transformed domain; and an embedded near-lossless layer. These contributions enable a progressive transmission while optimising both SNR and PAE performance. The embeddedness is accomplished by bitplane encoding plus arithmetic encoding. Experimental results suggest that the proposed method yields a highly competitive coding performance for hyperspectral images, outperforming multi-component JPEG2000 for l∞ norm and pairing its performance for l2 norm, and also outperforming M-CALIC in the near-lossless case -for PAE ≥5-

    Work design improvement at Miroad Rubber Industries Sdn. Bhd.

    Get PDF
    Erul Food Industries known as Salaiport Industry is a family-owned company and was established on July 2017. Salaiport Industry apparently moved to a new place at Pedas, Negeri Sembilan. Previously, Salaiport Industry operated in-house located at Pagoh, Johor. This small company major business is producing frozen smoked beef, smoked quail, smoke catfish and smoked duck. The main frozen product is smoked beef. The frozen smoked meat produced by Salaiport Industry is depending on customer demands. Usually the company produce 40 kg to 60 kg a day and operated between for four days until five days. Therefore, the company produce approximately around 80 kg to 120 kg per week. The company usually take 2 days for 1 complete cycle for the production as the first day the company will only receive the meat from the supplier and freeze the meat for use of tomorrow

    Optimal modeling for complex system design

    Get PDF
    The article begins with a brief introduction to the theory describing optimal data compression systems and their performance. A brief outline is then given of a representative algorithm that employs these lessons for optimal data compression system design. The implications of rate-distortion theory for practical data compression system design is then described, followed by a description of the tensions between theoretical optimality and system practicality and a discussion of common tools used in current algorithms to resolve these tensions. Next, the generalization of rate-distortion principles to the design of optimal collections of models is presented. The discussion focuses initially on data compression systems, but later widens to describe how rate-distortion theory principles generalize to model design for a wide variety of modeling applications. The article ends with a discussion of the performance benefits to be achieved using the multiple-model design algorithms

    A contrast-sensitive reversible visible image watermarking technique

    Get PDF
    A reversible (also called lossless, distortion-free, or invertible) visible watermarking scheme is proposed to satisfy the applications, in which the visible watermark is expected to combat copyright piracy but can be removed to losslessly recover the original image. We transparently reveal the watermark image by overlapping it on a user-specified region of the host image through adaptively adjusting the pixel values beneath the watermark, depending on the human visual system-based scaling factors. In order to achieve reversibility, a reconstruction/ recovery packet, which is utilized to restore the watermarked area, is reversibly inserted into non-visibly-watermarked region. The packet is established according to the difference image between the original image and its approximate version instead of its visibly watermarked version so as to alleviate its overhead. For the generation of the approximation, we develop a simple prediction technique that makes use of the unaltered neighboring pixels as auxiliary information. The recovery packet is uniquely encoded before hiding so that the original watermark pattern can be reconstructed based on the encoded packet. In this way, the image recovery process is carried out without needing the availability of the watermark. In addition, our method adopts data compression for further reduction in the recovery packet size and improvement in embedding capacity. The experimental results demonstrate the superiority of the proposed scheme compared to the existing methods

    Very fast watermarking by reversible contrast mapping

    Full text link
    Reversible contrast mapping (RCM) is a simple integer transform that applies to pairs of pixels. For some pairs of pixels, RCM is invertible, even if the least significant bits (LSBs) of the transformed pixels are lost. The data space occupied by the LSBs is suitable for data hiding. The embedded information bit-rates of the proposed spatial domain reversible watermarking scheme are close to the highest bit-rates reported so far. The scheme does not need additional data compression, and, in terms of mathematical complexity, it appears to be the lowest complexity one proposed up to now. A very fast lookup table implementation is proposed. Robustness against cropping can be ensured as well

    A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and Hyperspectral Images

    Get PDF
    Predictive coding is attractive for compression onboard of spacecrafts thanks to its low computational complexity, modest memory requirements and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally, predictive compression focused on the lossless and near-lossless modes of operation where the maximum error can be bounded but the rate of the compressed image is variable. Rate control is considered a challenging problem for predictive encoders due to the dependencies between quantization and prediction in the feedback loop, and the lack of a signal representation that packs the signal's energy into few coefficients. In this paper, we show that it is possible to design a rate control scheme intended for onboard implementation. In particular, we propose a general framework to select quantizers in each spatial and spectral region of an image so as to achieve the desired target rate while minimizing distortion. The rate control algorithm allows to achieve lossy, near-lossless compression, and any in-between type of compression, e.g., lossy compression with a near-lossless constraint. While this framework is independent of the specific predictor used, in order to show its performance, in this paper we tailor it to the predictor adopted by the CCSDS-123 lossless compression standard, obtaining an extension that allows to perform lossless, near-lossless and lossy compression in a single package. We show that the rate controller has excellent performance in terms of accuracy in the output rate, rate-distortion characteristics and is extremely competitive with respect to state-of-the-art transform coding
    corecore