35 research outputs found

    WKGM: Weight-K-space Generative Model for Parallel Imaging Reconstruction

    Full text link
    Deep learning based parallel imaging (PI) has made great progresses in recent years to accelerate magnetic resonance imaging (MRI). Nevertheless, it still has some limitations, such as the robustness and flexibility of existing methods have great deficiency. In this work, we propose a method to explore the k-space domain learning via robust generative modeling for flexible calibration-less PI reconstruction, coined weight-k-space generative model (WKGM). Specifically, WKGM is a generalized k-space domain model, where the k-space weighting technology and high-dimensional space augmentation design are efficiently incorporated for score-based generative model training, resulting in good and robust reconstructions. In addition, WKGM is flexible and thus can be synergistically combined with various traditional k-space PI models, which can make full use of the correlation between multi-coil data and realizecalibration-less PI. Even though our model was trained on only 500 images, experimental results with varying sampling patterns and acceleration factors demonstrate that WKGM can attain state-of-the-art reconstruction results with the well-learned k-space generative prior.Comment: 11pages, 12 figure

    Low-rank Tensor Assisted K-space Generative Model for Parallel Imaging Reconstruction

    Full text link
    Although recent deep learning methods, especially generative models, have shown good performance in fast magnetic resonance imaging, there is still much room for improvement in high-dimensional generation. Considering that internal dimensions in score-based generative models have a critical impact on estimating the gradient of the data distribution, we present a new idea, low-rank tensor assisted k-space generative model (LR-KGM), for parallel imaging reconstruction. This means that we transform original prior information into high-dimensional prior information for learning. More specifically, the multi-channel data is constructed into a large Hankel matrix and the matrix is subsequently folded into tensor for prior learning. In the testing phase, the low-rank rotation strategy is utilized to impose low-rank constraints on tensor output of the generative network. Furthermore, we alternately use traditional generative iterations and low-rank high-dimensional tensor iterations for reconstruction. Experimental comparisons with the state-of-the-arts demonstrated that the proposed LR-KGM method achieved better performance

    Low-rank and sparse reconstruction in dynamic magnetic resonance imaging via proximal splitting methods

    Get PDF
    Dynamic magnetic resonance imaging (MRI) consists of collecting multiple MR images in time, resulting in a spatio-temporal signal. However, MRI intrinsically suffers from long acquisition times due to various constraints. This limits the full potential of dynamic MR imaging, such as obtaining high spatial and temporal resolutions which are crucial to observe dynamic phenomena. This dissertation addresses the problem of the reconstruction of dynamic MR images from a limited amount of samples arising from a nuclear magnetic resonance experiment. The term limited can be explained by the approach taken in this thesis to speed up scan time, which is based on violating the Nyquist criterion by skipping measurements that would be normally acquired in a standard MRI procedure. The resulting problem can be classified in the general framework of linear ill-posed inverse problems. This thesis shows how low-dimensional signal models, specifically lowrank and sparsity, can help in the reconstruction of dynamic images from partial measurements. The use of these models are justified by significant developments in signal recovery techniques from partial data that have emerged in recent years in signal processing. The major contributions of this thesis are the development and characterisation of fast and efficient computational tools using convex low-rank and sparse constraints via proximal gradient methods, the development and characterisation of a novel joint reconstruction–separation method via the low-rank plus sparse matrix decomposition technique, and the development and characterisation of low-rank based recovery methods in the context of dynamic parallel MRI. Finally, an additional contribution of this thesis is to formulate the various MR image reconstruction problems in the context of convex optimisation to develop algorithms based on proximal splitting methods

    Global k-Space Interpolation for Dynamic MRI Reconstruction using Masked Image Modeling

    Full text link
    In dynamic Magnetic Resonance Imaging (MRI), k-space is typically undersampled due to limited scan time, resulting in aliasing artifacts in the image domain. Hence, dynamic MR reconstruction requires not only modeling spatial frequency components in the x and y directions of k-space but also considering temporal redundancy. Most previous works rely on image-domain regularizers (priors) to conduct MR reconstruction. In contrast, we focus on interpolating the undersampled k-space before obtaining images with Fourier transform. In this work, we connect masked image modeling with k-space interpolation and propose a novel Transformer-based k-space Global Interpolation Network, termed k-GIN. Our k-GIN learns global dependencies among low- and high-frequency components of 2D+t k-space and uses it to interpolate unsampled data. Further, we propose a novel k-space Iterative Refinement Module (k-IRM) to enhance the high-frequency components learning. We evaluate our approach on 92 in-house 2D+t cardiac MR subjects and compare it to MR reconstruction methods with image-domain regularizers. Experiments show that our proposed k-space interpolation method quantitatively and qualitatively outperforms baseline methods. Importantly, the proposed approach achieves substantially higher robustness and generalizability in cases of highly-undersampled MR data

    Structured low-rank methods for robust 3D multi-shot EPI

    Get PDF
    Magnetic resonance imaging (MRI) has inherently slow acquisition speed, and Echo-Planar Imaging (EPI), as an efficient acquisition scheme, has been widely used in functional magnetic resonance imaging (fMRI) where an image series with high temporal resolution is needed to measure neuronal activity. Recently, 3D multi-shot EPI which samples data from an entire 3D volume with repeated shots has been drawing growing interest for fMRI with its high isotropic spatial resolution, particularly at ultra-high fields. However, compared to single-shot EPI, multi-shot EPI is sensitive to any inter-shot instabilities, e.g., subject movement and even physiologically induced field fluctuations. These inter-shot inconsistencies can greatly negate the theoretical benefits of 3D multi-shot EPI over conventional 2D multi-slice acquisitions. Structured low-rank image reconstruction which regularises under-sampled image reconstruction by exploiting the linear dependencies in MRI data has been successfully demonstrated in a variety of applications. In this thesis, a structured low-rank reconstruction method is optimised for 3D multi-shot EPI imaging together with a dedicated sampling pattern termed seg-CAIPI, in order to enhance the robustness to physiological fluctuations and improve the temporal stability of 3D multi-shot EPI for fMRI at 7T. Moreover, a motion compensated structured low-rank reconstruction framework is also presented for robust 3D multi-shot EPI which further takes into account inter-shot instabilities due to bulk motion. Lastly, this thesis also investigates into the improvement of structured low-rank reconstruction from an algorithmic perspective and presents the locally structured low-rank reconstruction scheme
    corecore