13,894 research outputs found

    PF-OLA: A High-Performance Framework for Parallel On-Line Aggregation

    Full text link
    Online aggregation provides estimates to the final result of a computation during the actual processing. The user can stop the computation as soon as the estimate is accurate enough, typically early in the execution. This allows for the interactive data exploration of the largest datasets. In this paper we introduce the first framework for parallel online aggregation in which the estimation virtually does not incur any overhead on top of the actual execution. We define a generic interface to express any estimation model that abstracts completely the execution details. We design a novel estimator specifically targeted at parallel online aggregation. When executed by the framework over a massive 8TB8\text{TB} TPC-H instance, the estimator provides accurate confidence bounds early in the execution even when the cardinality of the final result is seven orders of magnitude smaller than the dataset size and without incurring overhead.Comment: 36 page

    COMET: A Recipe for Learning and Using Large Ensembles on Massive Data

    Full text link
    COMET is a single-pass MapReduce algorithm for learning on large-scale data. It builds multiple random forest ensembles on distributed blocks of data and merges them into a mega-ensemble. This approach is appropriate when learning from massive-scale data that is too large to fit on a single machine. To get the best accuracy, IVoting should be used instead of bagging to generate the training subset for each decision tree in the random forest. Experiments with two large datasets (5GB and 50GB compressed) show that COMET compares favorably (in both accuracy and training time) to learning on a subsample of data using a serial algorithm. Finally, we propose a new Gaussian approach for lazy ensemble evaluation which dynamically decides how many ensemble members to evaluate per data point; this can reduce evaluation cost by 100X or more

    A Cost-based Optimizer for Gradient Descent Optimization

    Full text link
    As the use of machine learning (ML) permeates into diverse application domains, there is an urgent need to support a declarative framework for ML. Ideally, a user will specify an ML task in a high-level and easy-to-use language and the framework will invoke the appropriate algorithms and system configurations to execute it. An important observation towards designing such a framework is that many ML tasks can be expressed as mathematical optimization problems, which take a specific form. Furthermore, these optimization problems can be efficiently solved using variations of the gradient descent (GD) algorithm. Thus, to decouple a user specification of an ML task from its execution, a key component is a GD optimizer. We propose a cost-based GD optimizer that selects the best GD plan for a given ML task. To build our optimizer, we introduce a set of abstract operators for expressing GD algorithms and propose a novel approach to estimate the number of iterations a GD algorithm requires to converge. Extensive experiments on real and synthetic datasets show that our optimizer not only chooses the best GD plan but also allows for optimizations that achieve orders of magnitude performance speed-up.Comment: Accepted at SIGMOD 201
    • …
    corecore