215,273 research outputs found

    A New Model for Cross-polarization Scattering from Perfect Conducting Random Rough Surfaces in Backscattering Direction

    Get PDF
    abstract: Scattering from random rough surface has been of interest for decades. Several methods were proposed to solve this problem, and Kirchho approximation (KA) and small perturbation method (SMP) are among the most popular. Both methods provide accurate results on rst order scattering, and the range of validity is limited and cross-polarization scattering coecient is zero for these two methods unless these two methods are carried out for higher orders. Furthermore, it is complicated for higher order formulation and multiple scattering and shadowing are neglected in these classic methods. Extension of these two methods has been made in order to x these problems. However, it is usually complicated and problem specic. While small slope approximation is one of the most widely used methods to bridge KA and SMP, it is not easy to implement in a general form. Two scale model can be employed to solve scattering problems for a tilted perturbation plane, the range of validity is limited. A new model is proposed in this thesis to deal with cross-polarization scattering phenomenon on perfect electric conducting random surfaces. Integral equation is adopted in this model. While integral equation method is often combined with numerical method to solve the scattering coecient, the proposed model solves the integral equation iteratively by analytic approximation. We utilize some approximations on the randomness of the surface, and obtain an explicit expression. It is shown that this expression achieves agreement with SMP method in second order.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Accurate EMC engineering on realistic platforms using an integral equation domain decomposition approach

    Get PDF
    This article investigates the efficiency, accuracy and versatility of a surface integral equation (SIE) multisolver scheme to address very complex and large-scale radiation problems including multiple scale features, in the context of realistic electromagnetic compatibility (EMC)/electromagnetic interference (EMI) studies. The tear-and-interconnect domain decomposition (DD) method is applied to properly decompose the problem into multiple subdomains attending to their material, geometrical, and scale properties, while different materials and arbitrarily shaped connections between them can be combined by using the so-called multiregion vector basis functions. The SIE-DD approach has been widely reported in the literature, mainly applied to scattering problems or small radiation problems. Complementarily, in this article, the focus is placed on realistic radiation problems, involving tens of antennas and sensors and including multiscale ingredients and multiple materials. Such kind of problems are very demanding in terms of both convergence and computational resources. Throughout two realistic case studies, the proposed SIE-DD approach is shown to be a powerful electromagnetic modeling tool to provide the accurate and fast solution which is indispensable to rigorously accomplish real-life EMC/EMI studies.Agencia Estatal de Investigación | Ref. TEC2017-85376-C2-1-RAgencia Estatal de Investigación | Ref. TEC2017-85376-C2-2-

    Holographic particle localization under multiple scattering

    Full text link
    We introduce a novel framework that incorporates multiple scattering for large-scale 3D particle-localization using single-shot in-line holography. Traditional holographic techniques rely on single-scattering models which become inaccurate under high particle-density. We demonstrate that by exploiting multiple-scattering, localization is significantly improved. Both forward and back-scattering are computed by our method under a tractable recursive framework, in which each recursion estimates the next higher-order field within the volume. The inverse scattering is presented as a nonlinear optimization that promotes sparsity, and can be implemented efficiently. We experimentally reconstruct 100 million object voxels from a single 1-megapixel hologram. Our work promises utilization of multiple scattering for versatile large-scale applications

    Modelling of coherence scanning interferometry for complex surfaces based on a boundary element method

    Get PDF
    Coherence scanning interferometry (CSI) is a well-established technique for measuring surface topography based on the coherence envelope and phase of interference fringes. The most commonly used surface reconstruction methods, i.e. frequency domain analysis, the envelope detection method, and the correlogram correlation method, obtain the phase of the measured field for each pixel and, from this obtain the surface height, by assuming the two are directly proportional. For surfaces with minor deviations from a plane, it is straightforward to show that the scattered field's phase is a linear function of surface height. An alternative approach known as the "foil model" gives more generally the scattered field as the result of a linear filtering process operating on a "foil" representation of the surface. This model assumes that the surface slowly varies on the optical scale and that there is no multiple scattering. However, for surfaces that are rough at the optical scale or have coherent features (e.g. vee-grooves), the effect of multiple scattering cannot be neglected and remains a problem for reconstruction methods. Linear reconstruction methods cannot provide accurate surface topographies for complex surfaces, since for such surfaces, the measurement process of CSI is fundamentally non-linear. To develop an advanced reconstruction method for CSI, an accurate model of the imaging process is required. In this paper, a boundary elements method is used as a rigorous scattering model to calculate the scattered field at a distant boundary. Then, the CSI signal is calculated by considering the image formation as back-propagation of the scattered field, combined with the reflected reference field. Through this approach, the optical response of a CSI system can be predicted rigorously for almost any arbitrary surface geometry. Future work will include a comprehensive experimental verification of this model, and development of the non-linear surface reconstruction algorithm

    Multiparton scattering at the LHC

    Get PDF
    The large parton flux at high energy gives rise to events where different pairs of partons interact contemporarily with large momentum exchange. A main effect of multiple parton interactions is to generate events with many jets at relatively large transverse momenta. The large value of the heavy quarks production cross section may however give also rise a sizable rate of events with several bb-quarks produced. We summarize the main features of multiparton interactions and make some estimate of the inclusive cross section to produce two bbˉb{\bar b} pairs within the acceptance of the ALICE detector.Comment: 10 pages, 4 figures, contribution to ALICE PP
    corecore