556 research outputs found

    Exploring the value of supporting multiple DSM protocols in Hardware DSM Controllers

    Get PDF
    Journal ArticleThe performance of a hardware distributed shared memory (DSM) system is largely dependent on its architect's ability to reduce the number of remote memory misses that occur. Previous attempts to solve this problem have included measures such as supporting both the CC-NUMA and S-COMA architectures is the same machine and providing a programmable DSM controller that can emulate any DSM mechanism. In this paper we first present the design of a DSM controller that supports multiple DSM protocols in custom hardware, and allows the programmer or compiler to specify on a per-variable basis what protocol to use to keep that variable coherent. This simulated performance of this DSM controller compares favorably with that of conventional single-protocol custom hardware designs, often outperforming the conventional systems by a factor of two. To achieve these promising results, that multi-protocol DSM controller needed to support only two DSM architectures (CC-NUMA and S-COMA) and three coherency protocols (both release and sequentially consistent write invalidate and release consistent write update). This work demonstrates the value of supporting a degree of flexibility in one's DSM controller design and suggests what operations such a flexible DSM controller should support

    Adaptive memory hierarchies for next generation tiled microarchitectures

    Get PDF
    Les últimes dècades el rendiment dels processadors i de les memòries ha millorat a diferent ritme, limitant el rendiment dels processadors i creant el conegut memory gap. Sol·lucionar aquesta diferència de rendiment és un camp d'investigació d'actualitat i que requereix de noves sol·lucions. Una sol·lució a aquest problema són les memòries “cache”, que permeten reduïr l'impacte d'unes latències de memòria creixents i que conformen la jerarquia de memòria. La majoria de d'organitzacions de les “caches” estan dissenyades per a uniprocessadors o multiprcessadors tradicionals. Avui en dia, però, el creixent nombre de transistors disponible per xip ha permès l'aparició de xips multiprocessador (CMPs). Aquests xips tenen diferents propietats i limitacions i per tant requereixen de jerarquies de memòria específiques per tal de gestionar eficientment els recursos disponibles. En aquesta tesi ens hem centrat en millorar el rendiment i la eficiència energètica de la jerarquia de memòria per CMPs, des de les “caches” fins als controladors de memòria. A la primera part d'aquesta tesi, s'han estudiat organitzacions tradicionals per les “caches” com les privades o compartides i s'ha pogut constatar que, tot i que funcionen bé per a algunes aplicacions, un sistema que s'ajustés dinàmicament seria més eficient. Tècniques com el Cooperative Caching (CC) combinen els avantatges de les dues tècniques però requereixen un mecanisme centralitzat de coherència que té un consum energètic molt elevat. És per això que en aquesta tesi es proposa el Distributed Cooperative Caching (DCC), un mecanisme que proporciona coherència en CMPs i aplica el concepte del cooperative caching de forma distribuïda. Mitjançant l'ús de directoris distribuïts s'obté una sol·lució més escalable i que, a més, disposa d'un mecanisme de marcatge més flexible i eficient energèticament. A la segona part, es demostra que les aplicacions fan diferents usos de la “cache” i que si es realitza una distribució de recursos eficient es poden aprofitar els que estan infrautilitzats. Es proposa l'Elastic Cooperative Caching (ElasticCC), una organització capaç de redistribuïr la memòria “cache” dinàmicament segons els requeriments de cada aplicació. Una de les contribucions més importants d'aquesta tècnica és que la reconfiguració es decideix completament a través del maquinari i que tots els mecanismes utilitzats es basen en estructures distribuïdes, permetent una millor escalabilitat. ElasticCC no només és capaç de reparticionar les “caches” segons els requeriments de cada aplicació, sinó que, a més a més, és capaç d'adaptar-se a les diferents fases d'execució de cada una d'elles. La nostra avaluació també demostra que la reconfiguració dinàmica de l'ElasticCC és tant eficient que gairebé proporciona la mateixa taxa de fallades que una configuració amb el doble de memòria.Finalment, la tesi es centra en l'estudi del comportament de les memòries DRAM i els seus controladors en els CMPs. Es demostra que, tot i que els controladors tradicionals funcionen eficientment per uniprocessadors, en CMPs els diferents patrons d'accés obliguen a repensar com estan dissenyats aquests sistemes. S'han presentat múltiples sol·lucions per CMPs però totes elles es veuen limitades per un compromís entre el rendiment global i l'equitat en l'assignació de recursos. En aquesta tesi es proposen els Thread Row Buffers (TRBs), una zona d'emmagatenament extra a les memòries DRAM que permetria guardar files de dades específiques per a cada aplicació. Aquest mecanisme permet proporcionar un accés equitatiu a la memòria sense perjudicar el seu rendiment global. En resum, en aquesta tesi es presenten noves organitzacions per la jerarquia de memòria dels CMPs centrades en la escalabilitat i adaptativitat als requeriments de les aplicacions. Els resultats presentats demostren que les tècniques proposades proporcionen un millor rendiment i eficiència energètica que les millors tècniques existents fins a l'actualitat.Processor performance and memory performance have improved at different rates during the last decades, limiting processor performance and creating the well known "memory gap". Solving this performance difference is an important research field and new solutions must be proposed in order to have better processors in the future. Several solutions exist, such as caches, that reduce the impact of longer memory accesses and conform the system memory hierarchy. However, most of the existing memory hierarchy organizations were designed for single processors or traditional multiprocessors. Nowadays, the increasing number of available transistors has allowed the apparition of chip multiprocessors, which have different constraints and require new ad-hoc memory systems able to efficiently manage memory resources. Therefore, in this thesis we have focused on improving the performance and energy efficiency of the memory hierarchy of chip multiprocessors, ranging from caches to DRAM memories. In the first part of this thesis we have studied traditional cache organizations such as shared or private caches and we have seen that they behave well only for some applications and that an adaptive system would be desirable. State-of-the-art techniques such as Cooperative Caching (CC) take advantage of the benefits of both worlds. This technique, however, requires the usage of a centralized coherence structure and has a high energy consumption. Therefore we propose the Distributed Cooperative Caching (DCC), a mechanism to provide coherence to chip multiprocessors and apply the concept of cooperative caching in a distributed way. Through the usage of distributed directories we obtain a more scalable solution and, in addition, has a more flexible and energy-efficient tag allocation method. We also show that applications make different uses of cache and that an efficient allocation can take advantage of unused resources. We propose Elastic Cooperative Caching (ElasticCC), an adaptive cache organization able to redistribute cache resources dynamically depending on application requirements. One of the most important contributions of this technique is that adaptivity is fully managed by hardware and that all repartitioning mechanisms are based on distributed structures, allowing a better scalability. ElasticCC not only is able to repartition cache sizes to application requirements, but also is able to dynamically adapt to the different execution phases of each thread. Our experimental evaluation also has shown that the cache partitioning provided by ElasticCC is efficient and is almost able to match the off-chip miss rate of a configuration that doubles the cache space. Finally, we focus in the behavior of DRAM memories and memory controllers in chip multiprocessors. Although traditional memory schedulers work well for uniprocessors, we show that new access patterns advocate for a redesign of some parts of DRAM memories. Several organizations exist for multiprocessor DRAM schedulers, however, all of them must trade-off between memory throughput and fairness. We propose Thread Row Buffers, an extended storage area in DRAM memories able to store a data row for each thread. This mechanism enables a fair memory access scheduling without hurting memory throughput. Overall, in this thesis we present new organizations for the memory hierarchy of chip multiprocessors which focus on the scalability and of the proposed structures and adaptivity to application behavior. Results show that the presented techniques provide a better performance and energy-efficiency than existing state-of-the-art solutions

    Scalable directoryless shared memory coherence using execution migration

    Get PDF
    We introduce the concept of deadlock-free migration-based coherent shared memory to the NUCA family of architectures. Migration-based architectures move threads among cores to guarantee sequential semantics in large multicores. Using a execution migration (EM) architecture, we achieve performance comparable to directory-based architectures without using directories: avoiding automatic data replication significantly reduces cache miss rates, while a fast network-level thread migration scheme takes advantage of shared data locality to reduce remote cache accesses that limit traditional NUCA performance. EM area and energy consumption are very competitive, and, on the average, it outperforms a directory-based MOESI baseline by 6.8% and a traditional S-NUCA design by 9.2%. We argue that with EM scaling performance has much lower cost and design complexity than in directory-based coherence and traditional NUCA architectures: by merely scaling network bandwidth from 128 to 256 (512) bit flits, the performance of our architecture improves by an additional 8% (12%), while the baselines show negligible improvement

    Dvé:Improving DRAM reliability and performance on-demand via coherent replication

    Get PDF

    A shared-disk parallel cluster file system

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Informática Pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaToday, clusters are the de facto cost effective platform both for high performance computing (HPC) as well as IT environments. HPC and IT are quite different environments and differences include, among others, their choices on file systems and storage: HPC favours parallel file systems geared towards maximum I/O bandwidth, but which are not fully POSIX-compliant and were devised to run on top of (fault prone) partitioned storage; conversely, IT data centres favour both external disk arrays (to provide highly available storage) and POSIX compliant file systems, (either general purpose or shared-disk cluster file systems, CFSs). These specialised file systems do perform very well in their target environments provided that applications do not require some lateral features, e.g., no file locking on parallel file systems, and no high performance writes over cluster-wide shared files on CFSs. In brief, we can say that none of the above approaches solves the problem of providing high levels of reliability and performance to both worlds. Our pCFS proposal makes a contribution to change this situation: the rationale is to take advantage on the best of both – the reliability of cluster file systems and the high performance of parallel file systems. We don’t claim to provide the absolute best of each, but we aim at full POSIX compliance, a rich feature set, and levels of reliability and performance good enough for broad usage – e.g., traditional as well as HPC applications, support of clustered DBMS engines that may run over regular files, and video streaming. pCFS’ main ideas include: · Cooperative caching, a technique that has been used in file systems for distributed disks but, as far as we know, was never used either in SAN based cluster file systems or in parallel file systems. As a result, pCFS may use all infrastructures (LAN and SAN) to move data. · Fine-grain locking, whereby processes running across distinct nodes may define nonoverlapping byte-range regions in a file (instead of the whole file) and access them in parallel, reading and writing over those regions at the infrastructure’s full speed (provided that no major metadata changes are required). A prototype was built on top of GFS (a Red Hat shared disk CFS): GFS’ kernel code was slightly modified, and two kernel modules and a user-level daemon were added. In the prototype, fine grain locking is fully implemented and a cluster-wide coherent cache is maintained through data (page fragments) movement over the LAN. Our benchmarks for non-overlapping writers over a single file shared among processes running on different nodes show that pCFS’ bandwidth is 2 times greater than NFS’ while being comparable to that of the Parallel Virtual File System (PVFS), both requiring about 10 times more CPU. And pCFS’ bandwidth also surpasses GFS’ (600 times for small record sizes, e.g., 4 KB, decreasing down to 2 times for large record sizes, e.g., 4 MB), at about the same CPU usage.Lusitania, Companhia de Seguros S.A, Programa IBM Shared University Research (SUR

    Scheduling in Transactional Memory Systems: Models, Algorithms, and Evaluations

    Get PDF
    Transactional memory provides an alternative synchronization mechanism that removes many limitations of traditional lock-based synchronization so that concurrent program writing is easier than lock-based code in modern multicore architectures. The fundamental module in a transactional memory system is the transaction which represents a sequence of read and write operations that are performed atomically to a set of shared resources; transactions may conflict if they access the same shared resources. A transaction scheduling algorithm is used to handle these transaction conflicts and schedule appropriately the transactions. In this dissertation, we study transaction scheduling problem in several systems that differ through the variation of the intra-core communication cost in accessing shared resources. Symmetric communication costs imply tightly-coupled systems, asymmetric communication costs imply large-scale distributed systems, and partially asymmetric communication costs imply non-uniform memory access systems. We made several theoretical contributions providing tight, near-tight, and/or impossibility results on three different performance evaluation metrics: execution time, communication cost, and load, for any transaction scheduling algorithm. We then complement these theoretical results by experimental evaluations, whenever possible, showing their benefits in practical scenarios. To the best of our knowledge, the contributions of this dissertation are either the first of their kind or significant improvements over the best previously known results
    corecore