9,946 research outputs found

    A Two-Layer Marked Point Process Framework for Multilevel Object Population Analysis

    Get PDF
    In this paper we introduce a probabilistic approach for extracting object ensembles from various digital images used by machine vision applications. The proposed framework extends conventional Marked Point Process models by allowing corresponding entities to form coherent object groups, by a Bayesian segmentation of the population. A global optimization process attempts to find the optimal configuration of entities and entity groups, considering the observed data, prior knowledge, and local interactions between the neighboring and semantically related objects. The proposed method is demonstrated in three different application areas: built in area analysis in remotely sensed images, traffic monitoring on airborne Lidar data and optical inspection of printed circuit boards

    An Embedded Marked Point Process Framework for Three-Level Object Population Analysis

    Get PDF
    In this paper we introduce a probabilistic approach for extracting complex hierarchical object structures from digital images used by various vision applications. The proposed framework extends conventional Marked Point Process (MPP) models by (i) admitting object-subobject ensembles in parent-child relationships and (ii) allowing corresponding objects to form coherent object groups, by a Bayesian segmentation of the population. Different from earlier, highly domain specific attempts on MPP generalization, the proposed model is defined at an abstract level, providing clear interfaces for applications in various domains. We also introduce a global optimization process for the multi-layer framework for finding optimal entity configurations, considering the observed data, prior knowledge, and interactions between the neighboring and the hierarchically related objects. The proposed method is demonstrated in three different application areas: built in area analysis in remotely sensed images, traffic monitoring on airborne and mobile laser scanning (Lidar) data and optical circuit inspection. A new benchmark database is published for the three test cases, and the model's performance is quantitatively evaluated

    An Embedded Marked Point Process Framework for Three-Level Object Population Analysis

    Full text link

    Multilayer Networks

    Full text link
    In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time, and include other types of complications. Such systems include multiple subsystems and layers of connectivity, and it is important to take such "multilayer" features into account to try to improve our understanding of complex systems. Consequently, it is necessary to generalize "traditional" network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion. The origins of such efforts date back several decades and arose in multiple disciplines, and now the study of multilayer networks has become one of the most important directions in network science. In this paper, we discuss the history of multilayer networks (and related concepts) and review the exploding body of work on such networks. To unify the disparate terminology in the large body of recent work, we discuss a general framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing concepts to each other, and provide a thorough discussion that compares, contrasts, and translates between related notions such as multilayer networks, multiplex networks, interdependent networks, networks of networks, and many others. We also survey and discuss existing data sets that can be represented as multilayer networks. We review attempts to generalize single-layer-network diagnostics to multilayer networks. We also discuss the rapidly expanding research on multilayer-network models and notions like community structure, connected components, tensor decompositions, and various types of dynamical processes on multilayer networks. We conclude with a summary and an outlook.Comment: Working paper; 59 pages, 8 figure

    On the Intrinsic Locality Properties of Web Reference Streams

    Full text link
    There has been considerable work done in the study of Web reference streams: sequences of requests for Web objects. In particular, many studies have looked at the locality properties of such streams, because of the impact of locality on the design and performance of caching and prefetching systems. However, a general framework for understanding why reference streams exhibit given locality properties has not yet emerged. In this work we take a first step in this direction, based on viewing the Web as a set of reference streams that are transformed by Web components (clients, servers, and intermediaries). We propose a graph-based framework for describing this collection of streams and components. We identify three basic stream transformations that occur at nodes of the graph: aggregation, disaggregation and filtering, and we show how these transformations can be used to abstract the effects of different Web components on their associated reference streams. This view allows a structured approach to the analysis of why reference streams show given properties at different points in the Web. Applying this approach to the study of locality requires good metrics for locality. These metrics must meet three criteria: 1) they must accurately capture temporal locality; 2) they must be independent of trace artifacts such as trace length; and 3) they must not involve manual procedures or model-based assumptions. We describe two metrics meeting these criteria that each capture a different kind of temporal locality in reference streams. The popularity component of temporal locality is captured by entropy, while the correlation component is captured by interreference coefficient of variation. We argue that these metrics are more natural and more useful than previously proposed metrics for temporal locality. We use this framework to analyze a diverse set of Web reference traces. We find that this framework can shed light on how and why locality properties vary across different locations in the Web topology. For example, we find that filtering and aggregation have opposing effects on the popularity component of the temporal locality, which helps to explain why multilevel caching can be effective in the Web. Furthermore, we find that all transformations tend to diminish the correlation component of temporal locality, which has implications for the utility of different cache replacement policies at different points in the Web.National Science Foundation (ANI-9986397, ANI-0095988); CNPq-Brazi

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)

    Video anomaly detection using deep generative models

    Full text link
    Video anomaly detection faces three challenges: a) no explicit definition of abnormality; b) scarce labelled data and c) dependence on hand-crafted features. This thesis introduces novel detection systems using unsupervised generative models, which can address the first two challenges. By working directly on raw pixels, they also bypass the last
    • …
    corecore