34 research outputs found

    A Two-Dimensional Spectrum for Bistatic SAR Processing Using Series Reversion

    Full text link

    MIMO-Based Forward-Looking SAR Imaging Algorithm and Simulation

    Get PDF
    Multiple-input multiple-output (MIMO) radar imaging can provide higher resolution and better sensitivity and thus can be applied to targets detection, recognition, and tracking. Missile-borne forward-looking SAR (MFL-SAR) is a new and special MIMO radar mode. It has advantage of two-dimensional (2D) imaging capability in forward direction over monostatic missile-borne SAR and airborne SAR. However, it is difficult to obtain accurate 2D frequency spectrum of the target echo signal due to the high velocity and descending height of this platform, which brings a lot of obstacles to imaging algorithm design. Therefore, a new imaging algorithm for MFL-SAR configuration based on the method of series reversion is proposed in this paper. This imaging method can implement range compression, secondary range compression (SRC), and range cell migration correction (RCMC) effectively. Finally, some simulations of point targets and comparison results confirm the efficiency of our proposed algorithm

    A Novel General Imaging Formation Algorithm for GNSS-Based Bistatic SAR.

    Get PDF
    Global Navigation Satellite System (GNSS)-based bistatic Synthetic Aperture Radar (SAR) recently plays a more and more significant role in remote sensing applications for its low-cost and real-time global coverage capability. In this paper, a general imaging formation algorithm was proposed for accurately and efficiently focusing GNSS-based bistatic SAR data, which avoids the interpolation processing in traditional back projection algorithms (BPAs). A two-dimensional point target spectrum model was firstly presented, and the bulk range cell migration correction (RCMC) was consequently derived for reducing range cell migration (RCM) and coarse focusing. As the bulk RCMC seriously changes the range history of the radar signal, a modified and much more efficient hybrid correlation operation was introduced for compensating residual phase errors. Simulation results were presented based on a general geometric topology with non-parallel trajectories and unequal velocities for both transmitter and receiver platforms, showing a satisfactory performance by the proposed method

    Imaging Formation Algorithm of the Ground and Space-Borne Hybrid BiSAR Based on Parameters Estimation from Direct Signal

    Get PDF
    This paper proposes a novel image formation algorithm for the bistatic synthetic aperture radar (BiSAR) with the configuration of a noncooperative transmitter and a stationary receiver in which the traditional imaging algorithm failed because the necessary imaging parameters cannot be estimated from the limited information from the noncooperative data provider. In the new algorithm, the essential parameters for imaging, such as squint angle, Doppler centroid, and Doppler chirp-rate, will be estimated by full exploration of the recorded direct signal (direct signal is the echo from satellite to stationary receiver directly) from the transmitter. The Doppler chirp-rate is retrieved by modeling the peak phase of direct signal as a quadratic polynomial. The Doppler centroid frequency and the squint angle can be derived from the image contrast optimization. Then the range focusing, the range cell migration correction (RCMC), and the azimuth focusing are implemented by secondary range compression (SRC) and the range cell migration, respectively. At last, the proposed algorithm is validated by imaging of the BiSAR experiment configured with china YAOGAN 10 SAR as the transmitter and the receiver platform located on a building at a height of 109 m in Jiangsu province. The experiment image with geometric correction shows good accordance with local Google images

    Efficient Bistatic SAR Raw Signal Simulator of Extended Scenes

    Get PDF

    Analysis for Resolution of Bistatic SAR Configuration with Geosynchronous Transmitter and UAV Receiver

    Get PDF
    Bistatical SAR with geosynchronous illuminator and unmanned aerial vehicle receiver (GEO-UAV BiSAR) has significant potential advantages in the field of continuous local observation under a dangerous environment within nearly 24 h. Due to the extreme platform velocity differences, the ellipse orbital movement of GEOSAR makes this BiSAR configuration not like the conventional spaceborne BiSAR. In this paper, based on the orbital kinetic characteristic of GEOSAR, we theoretically analyze the variations of bistatic configuration effect on common azimuth coverage and coherent accumulated time. In addition, two-dimension the resolution is deduced by geometrical configuration on the basis of gradient method. The simulations show that the appropriate selection of initial bistatic configuration can restrain from the appearance of the dead zone in common coverage. And the image results are obtained by frequency domain RD based on Method of Series Reversion (MSR). It is shown that GEO-UAV BiSAR has the high resolution ability

    Signal processing for microwave imaging systems with very sparse array

    Get PDF
    This dissertation investigates image reconstruction algorithms for near-field, two dimensional (2D) synthetic aperture radar (SAR) using compressed sensing (CS) based methods. In conventional SAR imaging systems, acquiring higher-quality images requires longer measuring time and/or more elements in an antenna array. Millimeter wave imaging systems using evenly-spaced antenna arrays also have spatial resolution constraints due to the large size of the antennas. This dissertation applies the CS principle to a bistatic antenna array that consists of separate transmitter and receiver subarrays very sparsely and non-uniformly distributed on a 2D plane. One pair of transmitter and receiver elements is turned on at a time, and different pairs are turned on in series to achieve synthetic aperture and controlled random measurements. This dissertation contributes to CS-hardware co-design by proposing several signal-processing methods, including monostatic approximation, re-gridding, adaptive interpolation, CS-based reconstruction, and image denoising. The proposed algorithms enable the successful implementation of CS-SAR hardware cameras, improve the resolution and image quality, and reduce hardware cost and experiment time. This dissertation also describes and analyzes the results for each independent method. The algorithms proposed in this dissertation break the limitations of hardware configuration. By using 16 x 16 transmit and receive elements with an average space of 16 mm, the sparse-array camera achieves the image resolution of 2 mm. This is equivalent to six percent of the λ/4 evenly-spaced array. The reconstructed images achieve similar quality as the fully-sampled array with the structure similarity (SSIM) larger than 0.8 and peak signal-to-noise ratio (PSNR) greater than 25 --Abstract, page iv

    Synthetic aperture imagery for high-resolution imaging sonar

    Get PDF
    Synthetic aperture sonar (SAS) can provide high-resolution underwater images. Traditional fast imaging algorithms designed for multi-receiver synthetic aperture sonar (MSAS) are complex because the point target reference spectrum (PTRS) deduction and imaging algorithm development are complicated. This paper proposes an imaging algorithm for the MSAS system to solve this issue. The proposed method first approximates the two-round slant range based on the phase center approximation method. The PTRS, including the quasi-monostatic and bistatic deformation terms, can be easily deduced. After compensating for the bistatic deformation term based on the interpolation and complex multiplication with the preprocessing step, the MSAS imagery can be simplified to the focus of the traditional monostatic SAS. Therefore, the conventional imaging algorithms designed for traditional monostatic SAS can be used directly. The proposed method providing high-resolution imaging results is more efficient than the traditional methods

    Higher order nonlinear chirp scaling algorithm for medium Earth orbit synthetic aperture radar

    Get PDF
    Due to the larger orbital arc and longer synthetic aperture time in medium Earth orbit (MEO) synthetic aperture radar (SAR), it is difficult for conventional SAR imaging algorithms to achieve a good imaging result. An improved higher order nonlinear chirp scaling (NLCS) algorithm is presented for MEO SAR imaging. First, the point target spectrum of the modified equivalent squint range model-based signal is derived, where a concise expression is obtained by the method of series reversion. Second, the well-known NLCS algorithm is modified according to the new spectrum and an improved algorithm is developed. The range dependence of the two-dimensional point target reference spectrum is removed by improved CS processing, and accurate focusing is realized through range-matched filter and range-dependent azimuth-matched filter. Simulations are performed to validate the presented algorithm
    corecore