81 research outputs found

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly called ’temporal resolution’), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    Precise Point Positioning Augmentation for Various Grades of Global Navigation Satellite System Hardware

    Get PDF
    The next generation of low-cost, dual-frequency, multi-constellation GNSS receivers, boards, chips and antennas are now quickly entering the market, offering to disrupt portions of the precise GNSS positioning industry with much lower cost hardware and promising to provide precise positioning to a wide range of consumers. The presented work provides a timely, novel and thorough investigation into the positioning performance promise. A systematic and rigorous set of experiments has been carried-out, collecting measurements from a wide array of low-cost, dual-frequency, multi-constellation GNSS boards, chips and antennas introduced in late 2018 and early 2019. These sensors range from dual-frequency, multi-constellation chips in smartphones to stand-alone chips and boards. In order to be comprehensive and realistic, these experiments were conducted in a number of static and kinematic benign, typical, suburban and urban environments. In terms of processing raw measurements from these sensors, the Precise Point Positioning (PPP) GNSS measurement processing mode was used. PPP has become the defacto GNSS positioning and navigation technique for scientific and engineering applications that require dm- to cm-level positioning in remote areas with few obstructions and provides for very efficient worldwide, wide-array augmentation corrections. To enhance solution accuracy, novel contributions were made through atmospheric constraints and the use of dual- and triple-frequency measurements to significantly reduce PPP convergence period. Applying PPP correction augmentations to smartphones and recently released low-cost equipment, novel analyses were made with significantly improved solution accuracy. Significant customization to the York-PPP GNSS measurement processing engine was necessary, especially in the quality control and residual analysis functions, in order to successfully process these datasets. Results for new smartphone sensors show positioning performance is typically at the few dm-level with a convergence period of approximately 40 minutes, which is 1 to 2 orders of magnitude better than standard point positioning. The GNSS chips and boards combined with higher-quality antennas produce positioning performance approaching geodetic quality. Under ideal conditions, carrier-phase ambiguities are resolvable. The results presented show a novel perspective and are very promising for the use of PPP (as well as RTK) in next-generation GNSS sensors for various application in smartphones, autonomous vehicles, Internet of things (IoT), etc

    On the use of a signal quality index applying at tracking stage level to assist the RAIM system of a GNSS receiver

    Get PDF
    In this work, a novel signal processing method is proposed to assist the Receiver Autonomous Integrity Monitoring (RAIM) module used in a receiver of Global Navigation Satellite Systems (GNSS) to improve the integrity of the estimated position. The proposed technique represents an evolution of the Multipath Distance Detector (MPDD), thanks to the introduction of a Signal Quality Index (SQI), which is both a metric able to evaluate the goodness of the signal, and a parameter used to improve the performance of the RAIM modules. Simulation results show the effectiveness of the proposed method

    A Survey on Low-Power GNSS

    Get PDF
    With the miniaturization of electronics, Global Navigation Satellite Systems (GNSS) receivers are getting more and more embedded into devices with harsh energy constraints. This process has led to new signal processing challenges due to the limited processing power on battery-operated devices and to challenging wireless environments, such as deep urban canyons, tunnels and bridges, forest canopies, increased jamming and spoofing. The latter is typically tackled via new GNSS constellations and modernization of the GNSS signals. However, the increase in signal complexity leads to higher computation requirements to recover the signals; thus, the trade-off between precision and energy should be evaluated for each application. This paper dives into low-power GNSS, focusing on the energy consumption of satellite-based positioning receivers used in battery-operated consumer devices and Internet of Things (IoT) sensors. We briefly overview the GNSS basics and the differences between legacy and modernized signals. Factors dominating the energy consumption of GNSS receivers are then reviewed, with special attention given to the complexity of the processing algorithms. Onboard and offloaded (Cloud/Edge) processing strategies are explored and compared. Finally, we highlight the current challenges of today’s research in low-power GNSS.Peer reviewe

    GNSS Integrity Monitoring assisted by Signal Processing techniques in Harsh Environments

    Get PDF
    The Global Navigation Satellite Systems (GNSS) applications are growing and more pervasive in the modern society. The presence of multi-constellation GNSS receivers able to use signals coming from different systems like the american Global Positioning System (GPS), the european Galileo, the Chinese Beidou and the russian GLONASS, permits to have more accuracy in position solution. All the receivers provide always more reliable solution but it is important to monitor the possible presence of problems in the position computation. These problems could be caused by the presence of impairments given by unintentional sources like multipath generated by the environment or intentional sources like spoofing attacks. In this thesis we focus on design algorithms at signal processing level used to assist Integrity operations in terms of Fault Detection and Exclusion (FDE). These are standalone algorithms all implemented in a software receiver without using external information. The first step was the creation of a detector for correlation distortion due to the multipath with his limitations. Once the detection is performed a quality index for the signal is computed and a decision about the exclusion of a specific Satellite Vehicle (SV) is taken. The exclusion could be not feasible so an alternative approach could be the inflation of the variance of the error models used in the position computation. The quality signal can be even used for spoofinng applications and a novel mitigation technique is developed and presented. In addition, the mitigation of the multipath can be reached at pseudoranges level by using new method to compute the position solution. The main contributions of this thesis are: the development of a multipath, or more in general, impairments detector at signal processing level; the creation of an index to measure the quality of a signal based on the detector’s output; the description of a novel signal processing method for detection and mitigation of spoofing effects, based on the use of linear regression algorithms; An alternative method to compute the Position Velocity and Time (PVT) solution by using different well known algorithms in order to mitigate the effects of the multipath on the position domain

    Robust GNSS Carrier Phase-based Position and Attitude Estimation Theory and Applications

    Get PDF
    Mención Internacional en el título de doctorNavigation information is an essential element for the functioning of robotic platforms and intelligent transportation systems. Among the existing technologies, Global Navigation Satellite Systems (GNSS) have established as the cornerstone for outdoor navigation, allowing for all-weather, all-time positioning and timing at a worldwide scale. GNSS is the generic term for referring to a constellation of satellites which transmit radio signals used primarily for ranging information. Therefore, the successful operation and deployment of prospective autonomous systems is subject to our capabilities to support GNSS in the provision of robust and precise navigational estimates. GNSS signals enable two types of ranging observations: –code pseudorange, which is a measure of the time difference between the signal’s emission and reception at the satellite and receiver, respectively, scaled by the speed of light; –carrier phase pseudorange, which measures the beat of the carrier signal and the number of accumulated full carrier cycles. While code pseudoranges provides an unambiguous measure of the distance between satellites and receiver, with a dm-level precision when disregarding atmospheric delays and clock offsets, carrier phase measurements present a much higher precision, at the cost of being ambiguous by an unknown number of integer cycles, commonly denoted as ambiguities. Thus, the maximum potential of GNSS, in terms of navigational precision, can be reach by the use of carrier phase observations which, in turn, lead to complicated estimation problems. This thesis deals with the estimation theory behind the provision of carrier phase-based precise navigation for vehicles traversing scenarios with harsh signal propagation conditions. Contributions to such a broad topic are made in three directions. First, the ultimate positioning performance is addressed, by proposing lower bounds on the signal processing realized at the receiver level and for the mixed real- and integer-valued problem related to carrier phase-based positioning. Second, multi-antenna configurations are considered for the computation of a vehicle’s orientation, introducing a new model for the joint position and attitude estimation problems and proposing new deterministic and recursive estimators based on Lie Theory. Finally, the framework of robust statistics is explored to propose new solutions to code- and carrier phase-based navigation, able to deal with outlying impulsive noises.La información de navegación es un elemental fundamental para el funcionamiento de sistemas de transporte inteligentes y plataformas robóticas. Entre las tecnologías existentes, los Sistemas Globales de Navegación por Satélite (GNSS) se han consolidado como la piedra angular para la navegación en exteriores, dando acceso a localización y sincronización temporal a una escala global, irrespectivamente de la condición meteorológica. GNSS es el término genérico que define una constelación de satélites que transmiten señales de radio, usadas primordinalmente para proporcionar información de distancia. Por lo tanto, la operatibilidad y funcionamiento de los futuros sistemas autónomos pende de nuestra capacidad para explotar GNSS y estimar soluciones de navegación robustas y precisas. Las señales GNSS permiten dos tipos de observaciones de alcance: –pseudorangos de código, que miden el tiempo transcurrido entre la emisión de las señales en los satélites y su acquisición en la tierra por parte de un receptor; –pseudorangos de fase de portadora, que miden la fase de la onda sinusoide que portan dichas señales y el número acumulado de ciclos completos. Los pseudorangos de código proporcionan una medida inequívoca de la distancia entre los satélites y el receptor, con una precisión de decímetros cuando no se tienen en cuenta los retrasos atmosféricos y los desfases del reloj. En contraposición, las observaciones de la portadora son super precisas, alcanzando el milímetro de exactidud, a expensas de ser ambiguas por un número entero y desconocido de ciclos. Por ende, el alcanzar la máxima precisión con GNSS queda condicionado al uso de las medidas de fase de la portadora, lo cual implica unos problemas de estimación de elevada complejidad. Esta tesis versa sobre la teoría de estimación relacionada con la provisión de navegación precisa basada en la fase de la portadora, especialmente para vehículos que transitan escenarios donde las señales no se propagan fácilmente, como es el caso de las ciudades. Para ello, primero se aborda la máxima efectividad del problema de localización, proponiendo cotas inferiores para el procesamiento de la señal en el receptor y para el problema de estimación mixto (es decir, cuando las incógnitas pertenecen al espacio de números reales y enteros). En segundo lugar, se consideran las configuraciones multiantena para el cálculo de la orientación de un vehículo, presentando un nuevo modelo para la estimación conjunta de posición y rumbo, y proponiendo estimadores deterministas y recursivos basados en la teoría de Lie. Por último, se explora el marco de la estadística robusta para proporcionar nuevas soluciones de navegación precisa, capaces de hacer frente a los ruidos atípicos.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: José Manuel Molina López.- Secretario: Giorgi Gabriele.- Vocal: Fabio Dovi

    GNSS-R Soil Moisture Retrieval Based on a XGboost Machine Learning Aided Method: Performance and Validation

    Get PDF
    Global navigation satellite system (GNSS)-reflectometry is a type of remote sensing technology and can be applied to soil moisture retrieval. Until now, various GNSS-R soil moisture retrieval methods have been reported. However, there still exist some problems due to the complexity of modeling and retrieval process, as well as the extreme uncertainty of the experimental environment and equipment. To investigate the behavior of bistatic GNSS-R soil moisture retrieval process, two ground-truth measurements with dierent soil conditions were carried out and the performance of the input variables was analyzed from the mathematical statistical aspect. Moreover, the feature of XGBoost method was utilized as well. As a recently developed ensemble machine learning method, the XGBoost method just emerged for the classification of remote sensing and geographic data, to investigate the characterization of the input variables in the GNSS-R soil moisture retrieval. It showed a good correlation with the statistical analysis of ground-truth measurements. The variable contributions for the input data can also be seen and evaluated. The study of the paper provides some experimental insights into the behavior of the GNSS-R soil moisture retrieval. It is worthwhile before establishing models and can also help with understanding the underlying GNSS-R phenomena and interpreting data

    Engineering Calibration and Physical Principles of GNSS-Reflectometry for Earth Remote Sensing

    Full text link
    The Cyclone Global Navigation Satellite System (CYGNSS) is a NASA mission that uses 32 Global Positioning System (GPS) satellites as active sources and 8 CYGNSS satellites as passive receivers to measure ocean surface roughness and wind speed, as well as soil moisture and flood inundation over land. This dissertation addresses two major aspects of engineering calibration: (1) characterization of the GPS effective isotropic radiated power (EIRP) for calibration of normalized bistatic radar cross section (NBRCS) observables; and (2) development of an end-to-end calibration approach using modeling and measurements of ocean surface mean square slope (MSS). To estimate the GPS transmit power, a ground-based GPS constellation power monitor (GCPM) system has been built to accurately and precisely measure the direct GPS signals. The transmit power of the L1 coarse/acquisition (C/A) code of the full GPS constellation is estimated using an optimal search algorithm. Updated values for transmit power have been successfully applied to CYGNSS L1B calibration and found to significantly reduce the PRN dependence of CYGNSS L1 and L2 data products. The gain pattern of each GPS satellite’s transmit antenna for the L1 C/A signal is determined from measurements of signal strength received by the 8-satellite CYGNSS constellation. Determination of GPS patterns requires knowledge of CYGNSS patterns and vice versa, so a procedure is developed to solve for both of them iteratively. The new GPS and CYGNSS patterns have been incorporated into the science data processing algorithm used by the CYGNSS mission and result in improved calibration performance. Variable transmit power by numerous Block IIF and IIR-M GPS space vehicles has been observed due to their flex power mode. Non-uniformity in the GPS antenna gain patterns further complicates EIRP estimation. A dynamic calibration approach is developed to further address GPS EIRP variability. It uses measurements by the direct received GPS signal to estimate GPS EIRP in the specular reflected direction and then incorporates them into the calibration of NBRCS. Dynamic EIRP calibration instantaneously detects and corrects for power fluctuations in the GPS transmitters and significantly reduces errors due to GPS antenna gain azimuthal asymmetry. It allows observations with the most variable Block IIF transmitters (approximately 37% of the GPS constellation) to be included in the standard data products and further improves the calibration quality of the NBRCS. A physics-based approach is then proposed to examine potential calibration errors and to further improve the Level 1 calibration. The mean square slope (mss) is a key physical parameter that relates the ocean surface properties (wave spectra) to the CYGNSS measurement of NBRCS. An approach to model the mss for validation with CYGNSS mss data is developed by adding the contribution of a high frequency tail to the WAVEWATCH III (WW3) mss. It is demonstrated that the ratio of CYGNSS mss to modified WW3 mss can be used to diagnose potential calibration errors that exist in the Level 1 calibration algorithm. This approach can help to improve CYGNSS data quality, including the Level 1 NBRCS and Level 2 ocean surface wind speed and roughness. The engineering calibration methods presented in this dissertation make significant contributions to the spatial coverage, calibration quality of the measured NBRCS and the geophysical data products produced by the NASA CYGNSS mission. The research is also useful to the system design, science investigation and engineering calibration of future GNSS-reflectometry missions.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168052/1/wangtl_1.pd
    corecore