22,130 research outputs found

    Artificial Intelligence : from Research to Application ; the Upper-Rhine Artificial Intelligence Symposium (UR-AI 2019)

    Full text link
    The TriRhenaTech alliance universities and their partners presented their competences in the field of artificial intelligence and their cross-border cooperations with the industry at the tri-national conference 'Artificial Intelligence : from Research to Application' on March 13th, 2019 in Offenburg. The TriRhenaTech alliance is a network of universities in the Upper Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, and Offenburg, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students

    Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects

    Full text link
    An image is not just a collection of objects, but rather a graph where each object is related to other objects through spatial and semantic relations. Using relational reasoning modules, such as the non-local module \cite{wang2017non}, can therefore improve object detection. Current schemes apply such dedicated modules either to a specific layer of the bottom-up stream, or between already-detected objects. We show that the relational process can be better modeled in a coarse-to-fine manner and present a novel framework, applying a non-local module sequentially to increasing resolution feature maps along the top-down stream. In this way, information can naturally passed from larger objects to smaller related ones. Applying the module to fine feature maps further allows the information to pass between the small objects themselves, exploiting repetitions of instances of the same class. In practice, due to the expensive memory utilization of the non-local module, it is infeasible to apply the module as currently used to high-resolution feature maps. We redesigned the non local module, improved it in terms of memory and number of operations, allowing it to be placed anywhere along the network. We further incorporated relative spatial information into the module, in a manner that can be incorporated into our efficient implementation. We show the effectiveness of our scheme by improving the results of detecting small objects on COCO by 1-2 AP points over Faster and Mask RCNN and by 1 AP over using non-local module on the bottom-up stream

    Answering Visual-Relational Queries in Web-Extracted Knowledge Graphs

    Full text link
    A visual-relational knowledge graph (KG) is a multi-relational graph whose entities are associated with images. We explore novel machine learning approaches for answering visual-relational queries in web-extracted knowledge graphs. To this end, we have created ImageGraph, a KG with 1,330 relation types, 14,870 entities, and 829,931 images crawled from the web. With visual-relational KGs such as ImageGraph one can introduce novel probabilistic query types in which images are treated as first-class citizens. Both the prediction of relations between unseen images as well as multi-relational image retrieval can be expressed with specific families of visual-relational queries. We introduce novel combinations of convolutional networks and knowledge graph embedding methods to answer such queries. We also explore a zero-shot learning scenario where an image of an entirely new entity is linked with multiple relations to entities of an existing KG. The resulting multi-relational grounding of unseen entity images into a knowledge graph serves as a semantic entity representation. We conduct experiments to demonstrate that the proposed methods can answer these visual-relational queries efficiently and accurately

    Hide-and-Seek: A Template for Explainable AI

    Full text link
    Lack of transparency has been the Achilles heal of Neural Networks and their wider adoption in industry. Despite significant interest this shortcoming has not been adequately addressed. This study proposes a novel framework called Hide-and-Seek (HnS) for training Interpretable Neural Networks and establishes a theoretical foundation for exploring and comparing similar ideas. Extensive experimentation indicates that a high degree of interpretability can be imputed into Neural Networks, without sacrificing their predictive power.Comment: 24 pages, 14 figures. Submitted on a special issue for Explainable AI, on Elsevier's "Artificial Intelligence

    Fast Bayesian Uncertainty Estimation and Reduction of Batch Normalized Single Image Super-Resolution Network

    Full text link
    Convolutional neural network (CNN) has achieved unprecedented success in image super-resolution tasks in recent years. However, the network's performance depends on the distribution of the training sets and degrades on out-of-distribution samples. This paper adopts a Bayesian approach for estimating uncertainty associated with output and applies it in a deep image super-resolution model to address the concern mentioned above. We use the uncertainty estimation technique using the batch-normalization layer, where stochasticity of the batch mean and variance generate Monte-Carlo (MC) samples. The MC samples, which are nothing but different super-resolved images using different stochastic parameters, reconstruct the image, and provide a confidence or uncertainty map of the reconstruction. We propose a faster approach for MC sample generation, and it allows the variable image size during testing. Therefore, it will be useful for image reconstruction domain. Our experimental findings show that this uncertainty map strongly relates to the quality of reconstruction generated by the deep CNN model and explains its limitation. Furthermore, this paper proposes an approach to reduce the model's uncertainty for an input image, and it helps to defend the adversarial attacks on the image super-resolution model. The proposed uncertainty reduction technique also improves the performance of the model for out-of-distribution test images. To the best of our knowledge, we are the first to propose an adversarial defense mechanism in any image reconstruction domain.Comment: To appear in the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2021

    Understanding the Mechanisms of Deep Transfer Learning for Medical Images

    Full text link
    The ability to automatically learn task specific feature representations has led to a huge success of deep learning methods. When large training data is scarce, such as in medical imaging problems, transfer learning has been very effective. In this paper, we systematically investigate the process of transferring a Convolutional Neural Network, trained on ImageNet images to perform image classification, to kidney detection problem in ultrasound images. We study how the detection performance depends on the extent of transfer. We show that a transferred and tuned CNN can outperform a state-of-the-art feature engineered pipeline and a hybridization of these two techniques achieves 20\% higher performance. We also investigate how the evolution of intermediate response images from our network. Finally, we compare these responses to state-of-the-art image processing filters in order to gain greater insight into how transfer learning is able to effectively manage widely varying imaging regimes.Comment: Published in MICCAI Workshop on Deep Learning in Medical Image Analysis, 201

    Position paper: a general framework for applying machine learning techniques in operating room

    Full text link
    In this position paper we describe a general framework for applying machine learning and pattern recognition techniques in healthcare. In particular, we are interested in providing an automated tool for monitoring and incrementing the level of awareness in the operating room and for identifying human errors which occur during the laparoscopy surgical operation. The framework that we present is divided in three different layers: each layer implements algorithms which have an increasing level of complexity and which perform functionality with an higher degree of abstraction. In the first layer, raw data collected from sensors in the operating room during surgical operation, they are pre-processed and aggregated. The results of this initial phase are transferred to a second layer, which implements pattern recognition techniques and extract relevant features from the data. Finally, in the last layer, expert systems are employed to take high level decisions, which represent the final output of the system

    Long-Bone Fracture Detection using Artificial Neural Networks based on Line Features of X-ray Images

    Full text link
    Two line-based fracture detection scheme are developed and discussed, namely Standard line-based fracture detection and Adaptive Differential Parameter Optimized (ADPO) line-based fracture detection. The purpose for the two line-based fracture detection schemes is to detect fractured lines from X-ray images using extracted features based on recognised patterns to differentiate fractured lines from non-fractured lines. The difference between the two schemes is the detection of detailed lines. The ADPO scheme optimizes the parameters of the Probabilistic Hough Transform, such that granule lines within the fractured regions are detected, whereas the Standard scheme is unable to detect them. The lines are detected using the Probabilistic Hough Function, in which the detected lines are a representation of the image edge objects. The lines are given in the form of points, (x,y), which includes the starting and ending point. Based on the given line points, 13 features are extracted from each line, as a summary of line information. These features are used for fracture and non-fracture classification of the detected lines. The classification is carried out by the Artificial Neural Network (ANN). There are two evaluations that are employed to evaluate both the entirety of the system and the ANN. The Standard Scheme is capable of achieving an average accuracy of 74.25%, whilst the ADPO scheme achieved an average accuracy of 74.4%. The ADPO scheme is opted for over the Standard scheme, however it can be further improved with detected contours and its extracted features

    Regularized Fuzzy Neural Networks to Aid Effort Forecasting in the Construction and Software Development

    Full text link
    Predicting the time to build software is a very complex task for software engineering managers. There are complex factors that can directly interfere with the productivity of the development team. Factors directly related to the complexity of the system to be developed drastically change the time necessary for the completion of the works with the software factories. This work proposes the use of a hybrid system based on artificial neural networks and fuzzy systems to assist in the construction of an expert system based on rules to support in the prediction of hours destined to the development of software according to the complexity of the elements present in the same. The set of fuzzy rules obtained by the system helps the management and control of software development by providing a base of interpretable estimates based on fuzzy rules. The model was submitted to tests on a real database, and its results were promissory in the construction of an aid mechanism in the predictability of the software construction

    An Introduction to Deep Visual Explanation

    Full text link
    The practical impact of deep learning on complex supervised learning problems has been significant, so much so that almost every Artificial Intelligence problem, or at least a portion thereof, has been somehow recast as a deep learning problem. The applications appeal is significant, but this appeal is increasingly challenged by what some call the challenge of explainability, or more generally the more traditional challenge of debuggability: if the outcomes of a deep learning process produce unexpected results (e.g., less than expected performance of a classifier), then there is little available in the way of theories or tools to help investigate the potential causes of such unexpected behavior, especially when this behavior could impact people's lives. We describe a preliminary framework to help address this issue, which we call "deep visual explanation" (DVE). "Deep," because it is the development and performance of deep neural network models that we want to understand. "Visual," because we believe that the most rapid insight into a complex multi-dimensional model is provided by appropriate visualization techniques, and "Explanation," because in the spectrum from instrumentation by inserting print statements to the abductive inference of explanatory hypotheses, we believe that the key to understanding deep learning relies on the identification and exposure of hypotheses about the performance behavior of a learned deep model. In the exposition of our preliminary framework, we use relatively straightforward image classification examples and a variety of choices on initial configuration of a deep model building scenario. By careful but not complicated instrumentation, we expose classification outcomes of deep models using visualization, and also show initial results for one potential application of interpretability.Comment: Accepted at NIPS 2017 - Workshop Interpreting, Explaining and Visualizing Deep Learnin
    corecore