1,792 research outputs found

    How many matchings cover the nodes of a graph?

    Full text link
    Given an undirected graph, are there kk matchings whose union covers all of its nodes, that is, a matching-kk-cover? A first, easy polynomial solution from matroid union is possible, as already observed by Wang, Song and Yuan (Mathematical Programming, 2014). However, it was not satisfactory neither from the algorithmic viewpoint nor for proving graphic theorems, since the corresponding matroid ignores the edges of the graph. We prove here, simply and algorithmically: all nodes of a graph can be covered with k2k\ge 2 matchings if and only if for every stable set SS we have SkN(S)|S|\le k\cdot|N(S)|. When k=1k=1, an exception occurs: this condition is not enough to guarantee the existence of a matching-11-cover, that is, the existence of a perfect matching, in this case Tutte's famous matching theorem (J. London Math. Soc., 1947) provides the right `good' characterization. The condition above then guarantees only that a perfect 22-matching exists, as known from another theorem of Tutte (Proc. Amer. Math. Soc., 1953). Some results are then deduced as consequences with surprisingly simple proofs, using only the level of difficulty of bipartite matchings. We give some generalizations, as well as a solution for minimization if the edge-weights are non-negative, while the edge-cardinality maximization of matching-22-covers turns out to be already NP-hard. We have arrived at this problem as the line graph special case of a model arising for manufacturing integrated circuits with the technology called `Directed Self Assembly'.Comment: 10 page

    A simple Havel-Hakimi type algorithm to realize graphical degree sequences of directed graphs

    Full text link
    One of the simplest ways to decide whether a given finite sequence of positive integers can arise as the degree sequence of a simple graph is the greedy algorithm of Havel and Hakimi. This note extends their approach to directed graphs. It also studies cases of some simple forbidden edge-sets. Finally, it proves a result which is useful to design an MCMC algorithm to find random realizations of prescribed directed degree sequences.Comment: 11 pages, 1 figure submitted to "The Electronic Journal of Combinatorics

    On the swap-distances of different realizations of a graphical degree sequence

    Get PDF
    One of the first graph theoretical problems which got serious attention (already in the fifties of the last century) was to decide whether a given integer sequence is equal to the degree sequence of a simple graph (or it is {\em graphical} for short). One method to solve this problem is the greedy algorithm of Havel and Hakimi, which is based on the {\em swap} operation. Another, closely related question is to find a sequence of swap operations to transform one graphical realization into another one of the same degree sequence. This latter problem got particular emphases in connection of fast mixing Markov chain approaches to sample uniformly all possible realizations of a given degree sequence. (This becomes a matter of interest in connection of -- among others -- the study of large social networks.) Earlier there were only crude upper bounds on the shortest possible length of such swap sequences between two realizations. In this paper we develop formulae (Gallai-type identities) for these {\em swap-distance}s of any two realizations of simple undirected or directed degree sequences. These identities improves considerably the known upper bounds on the swap-distances.Comment: to be publishe
    corecore