795 research outputs found

    A Survey on Forensics and Compliance Auditing for Critical Infrastructure Protection

    Get PDF
    The broadening dependency and reliance that modern societies have on essential services provided by Critical Infrastructures is increasing the relevance of their trustworthiness. However, Critical Infrastructures are attractive targets for cyberattacks, due to the potential for considerable impact, not just at the economic level but also in terms of physical damage and even loss of human life. Complementing traditional security mechanisms, forensics and compliance audit processes play an important role in ensuring Critical Infrastructure trustworthiness. Compliance auditing contributes to checking if security measures are in place and compliant with standards and internal policies. Forensics assist the investigation of past security incidents. Since these two areas significantly overlap, in terms of data sources, tools and techniques, they can be merged into unified Forensics and Compliance Auditing (FCA) frameworks. In this paper, we survey the latest developments, methodologies, challenges, and solutions addressing forensics and compliance auditing in the scope of Critical Infrastructure Protection. This survey focuses on relevant contributions, capable of tackling the requirements imposed by massively distributed and complex Industrial Automation and Control Systems, in terms of handling large volumes of heterogeneous data (that can be noisy, ambiguous, and redundant) for analytic purposes, with adequate performance and reliability. The achieved results produced a taxonomy in the field of FCA whose key categories denote the relevant topics in the literature. Also, the collected knowledge resulted in the establishment of a reference FCA architecture, proposed as a generic template for a converged platform. These results are intended to guide future research on forensics and compliance auditing for Critical Infrastructure Protection.info:eu-repo/semantics/publishedVersio

    Risk and threat mitigation techniques in internet of things (IoT) environments: a survey

    Get PDF
    Security in the Internet of Things (IoT) remains a predominant area of concern. Although several other surveys have been published on this topic in recent years, the broad spectrum that this area aims to cover, the rapid developments and the variety of concerns make it impossible to cover the topic adequately. This survey updates the state of the art covered in previous surveys and focuses on defences and mitigations against threats rather than on the threats alone, an area that is less extensively covered by other surveys. This survey has collated current research considering the dynamicity of the IoT environment, a topic missed in other surveys and warrants particular attention. To consider the IoT mobility, a life-cycle approach is adopted to the study of dynamic and mobile IoT environments and means of deploying defences against malicious actors aiming to compromise an IoT network and to evolve their attack laterally within it and from it. This survey takes a more comprehensive and detailed step by analysing a broad variety of methods for accomplishing each of the mitigation steps, presenting these uniquely by introducing a “defence-in-depth” approach that could significantly slow down the progress of an attack in the dynamic IoT environment. This survey sheds a light on leveraging redundancy as an inherent nature of multi-sensor IoT applications, to improve integrity and recovery. This study highlights the challenges of each mitigation step, emphasises novel perspectives, and reconnects the discussed mitigation steps to the ground principles they seek to implement

    The Application of Data Analytics Technologies for the Predictive Maintenance of Industrial Facilities in Internet of Things (IoT) Environments

    Get PDF
    In industrial production environments, the maintenance of equipment has a decisive influence on costs and on the plannability of production capacities. In particular, unplanned failures during production times cause high costs, unplanned downtimes and possibly additional collateral damage. Predictive Maintenance starts here and tries to predict a possible failure and its cause so early that its prevention can be prepared and carried out in time. In order to be able to predict malfunctions and failures, the industrial plant with its characteristics, as well as wear and ageing processes, must be modelled. Such modelling can be done by replicating its physical properties. However, this is very complex and requires enormous expert knowledge about the plant and about wear and ageing processes of each individual component. Neural networks and machine learning make it possible to train such models using data and offer an alternative, especially when very complex and non-linear behaviour is evident. In order for models to make predictions, as much data as possible about the condition of a plant and its environment and production planning data is needed. In Industrial Internet of Things (IIoT) environments, the amount of available data is constantly increasing. Intelligent sensors and highly interconnected production facilities produce a steady stream of data. The sheer volume of data, but also the steady stream in which data is transmitted, place high demands on the data processing systems. If a participating system wants to perform live analyses on the incoming data streams, it must be able to process the incoming data at least as fast as the continuous data stream delivers it. If this is not the case, the system falls further and further behind in processing and thus in its analyses. This also applies to Predictive Maintenance systems, especially if they use complex and computationally intensive machine learning models. If sufficiently scalable hardware resources are available, this may not be a problem at first. However, if this is not the case or if the processing takes place on decentralised units with limited hardware resources (e.g. edge devices), the runtime behaviour and resource requirements of the type of neural network used can become an important criterion. This thesis addresses Predictive Maintenance systems in IIoT environments using neural networks and Deep Learning, where the runtime behaviour and the resource requirements are relevant. The question is whether it is possible to achieve better runtimes with similarly result quality using a new type of neural network. The focus is on reducing the complexity of the network and improving its parallelisability. Inspired by projects in which complexity was distributed to less complex neural subnetworks by upstream measures, two hypotheses presented in this thesis emerged: a) the distribution of complexity into simpler subnetworks leads to faster processing overall, despite the overhead this creates, and b) if a neural cell has a deeper internal structure, this leads to a less complex network. Within the framework of a qualitative study, an overall impression of Predictive Maintenance applications in IIoT environments using neural networks was developed. Based on the findings, a novel model layout was developed named Sliced Long Short-Term Memory Neural Network (SlicedLSTM). The SlicedLSTM implements the assumptions made in the aforementioned hypotheses in its inner model architecture. Within the framework of a quantitative study, the runtime behaviour of the SlicedLSTM was compared with that of a reference model in the form of laboratory tests. The study uses synthetically generated data from a NASA project to predict failures of modules of aircraft gas turbines. The dataset contains 1,414 multivariate time series with 104,897 samples of test data and 160,360 samples of training data. As a result, it could be proven for the specific application and the data used that the SlicedLSTM delivers faster processing times with similar result accuracy and thus clearly outperforms the reference model in this respect. The hypotheses about the influence of complexity in the internal structure of the neuronal cells were confirmed by the study carried out in the context of this thesis

    Exploring Text Mining and Analytics for Applications in Public Security: An in-depth dive into a systematic literature review

    Get PDF
    Text mining and related analytics emerge as a technological approach to support human activities in extracting useful knowledge through texts in several formats. From a managerial point of view, it can help organizations in planning and decision-making processes, providing information that was not previously evident through textual materials produced internally or even externally. In this context, within the public/governmental scope, public security agencies are great beneficiaries of the tools associated with text mining, in several aspects, from applications in the criminal area to the collection of people's opinions and sentiments about the actions taken to promote their welfare. This article reports details of a systematic literature review focused on identifying the main areas of text mining application in public security, the most recurrent technological tools, and future research directions. The searches covered four major article bases (Scopus, Web of Science, IEEE Xplore, and ACM Digital Library), selecting 194 materials published between 2014 and the first half of 2021, among journals, conferences, and book chapters. There were several findings concerning the targets of the literature review, as presented in the results of this article

    ENHANCING THE OPERATIONAL RESILIENCE OF CYBER- MANUFACTURING SYSTEMS (CMS) AGAINST CYBER-ATTACKS

    Get PDF
    Cyber-manufacturing systems (CMS) are interconnected production environments comprised of complex and networked cyber-physical systems (CPS) that can be instantiated across one or many locations. However, this vision of manufacturing environments ushers in the challenge of addressing new security threats to production systems that still contain traditional closed legacy elements. The widespread adoption of CMS has come with a dramatic increase in successful cyber-attacks. With a myriad of new targets and vulnerabilities, hackers have been able to cause significant economic losses by disrupting manufacturing operations, reducing outgoing product quality, and altering product designs. This research aims to contribute to the design of more resilient cyber-manufacturing systems. Traditional cybersecurity mechanisms focus on preventing the occurrence of cyber-attacks, improving the accuracy of detection, and increasing the speed of recovery. More often neglected is addressing how to respond to a successful attack during the time from the attack onset until the system recovery. We propose a novel approach that correlates the state of production and the timing of the attack to predict the effect on the manufacturing key performance indicators. Then a real-time decision strategy is deployed to select the appropriate response to maintain availability, utilization efficiency, and a quality ratio above degradation thresholds until recovery. Our goal is to demonstrate that the operational resilience of CMS can be enhanced such that the system will be able to withstand the advent of cyber-attacks while remaining operationally resilient. This research presents a novel framework to enhance the operational resilience of cyber-manufacturing systems against cyber-attacks. In contrast to other CPS where the general goal of operational resilience is to maintain a certain target level of availability, we propose a manufacturing-centric approach in which we utilize production key performance indicators as targets. This way we adopt a decision-making process for security in a way that is aligned with the operational strategy and bound to the socio-economic constraints inherent to manufacturing. Our proposed framework consists of four steps: 1) Identify: map CMS production goals, vulnerabilities, and resilience-enhancing mechanisms; 2) Establish: set targets of performance in production output, scrap rate, and downtime at different states; 3) Select: determine which mechanisms are needed and their triggering strategy, and 4) Deploy: integrate into the operation of the CMS the selected mechanisms, threat severity evaluation, and activation strategy. Lastly, we demonstrate via experimentation on a CMS testbed that this framework can effectively enhance the operational resilience of a CMS against a known cyber-attack

    Next-Generation Industrial Control System (ICS) Security:Towards ICS Honeypots for Defence-in-Depth Security

    Get PDF
    The advent of Industry 4.0 and smart manufacturing has led to an increased convergence of traditional manufacturing and production technologies with IP communications. Legacy Industrial Control System (ICS) devices are now exposed to a wide range of previously unconsidered threats, which must be considered to ensure the safe operation of industrial processes. Especially as cyberspace is presenting itself as a popular domain for nation-state operations, including against critical infrastructure. Honeypots are a well-known concept within traditional IT security, and they can enable a more proactive approach to security, unlike traditional systems. More work needs to be done to understand their usefulness within OT and critical infrastructure. This thesis advances beyond current honeypot implementations and furthers the current state-of-the-art by delivering novel ways of deploying ICS honeypots and delivering concrete answers to key research questions within the area. This is done by answering the question previously raised from a multitude of perspectives. We discuss relevant legislation, such as the UK Cyber Assessment Framework, the US NIST Framework for Improving Critical Infrastructure Cybersecurity, and associated industry-based standards and guidelines supporting operator compliance. Standards and guidance are used to frame a discussion on our survey of existing ICS honeypot implementations in the literature and their role in supporting regulatory objectives. However, these deployments are not always correctly configured and might differ from a real ICS. Based on these insights, we propose a novel framework towards the classification and implementation of ICS honeypots. This is underpinned by a study into the passive identification of ICS honeypots using Internet scanner data to identify honeypot characteristics. We also present how honeypots can be leveraged to identify when bespoke ICS vulnerabilities are exploited within the organisational network—further strengthening the case for honeypot usage within critical infrastructure environments. Additionally, we demonstrate a fundamentally different approach to the deployment of honeypots. By deploying it as a deterrent, to reduce the likelihood that an adversary interacts with a real system. This is important as skilled attackers are now adept at fingerprinting and avoiding honeypots. The results presented in this thesis demonstrate that honeypots can provide several benefits to the cyber security of and alignment to regulations within the critical infrastructure environment

    Cybersecurity Challenges of Power Transformers

    Full text link
    The rise of cyber threats on critical infrastructure and its potential for devastating consequences, has significantly increased. The dependency of new power grid technology on information, data analytic and communication systems make the entire electricity network vulnerable to cyber threats. Power transformers play a critical role within the power grid and are now commonly enhanced through factory add-ons or intelligent monitoring systems added later to improve the condition monitoring of critical and long lead time assets such as transformers. However, the increased connectivity of those power transformers opens the door to more cyber attacks. Therefore, the need to detect and prevent cyber threats is becoming critical. The first step towards that would be a deeper understanding of the potential cyber-attacks landscape against power transformers. Much of the existing literature pays attention to smart equipment within electricity distribution networks, and most methods proposed are based on model-based detection algorithms. Moreover, only a few of these works address the security vulnerabilities of power elements, especially transformers within the transmission network. To the best of our knowledge, there is no study in the literature that systematically investigate the cybersecurity challenges against the newly emerged smart transformers. This paper addresses this shortcoming by exploring the vulnerabilities and the attack vectors of power transformers within electricity networks, the possible attack scenarios and the risks associated with these attacks.Comment: 11 page

    To Deceive or not Deceive: Unveiling The Adoption Determinants Of Defensive Cyber Deception in Norwegian Organizations

    Get PDF
    Due to the prevailing threat landscape in Norway, it is imperative for organizations to safe- guard their infrastructures against cyber threats. One of the technologies that is advan- tageous against these threats is defensive cyber deception, which is an approach in cyber security that aims to be proactive, to interact with the attackers, trick them, deceive them and use this to the defenders advantage. This type of technology can help organizations defend against sophisticated threat actors that are able to avoid more traditional defensive mechanisms, such as Intrusion Detection Systems (IDS) or Intrusion Prevention Systems (IPS). In order to aid the adoption of defensive cyber deception in Norway, we asked the question: "What affects the adoption of defensive cyber deception in organizations in Nor- way?". To answer this question, we utilized the Technology, Organization, and Environment (TOE) Framework to identity what factors affect an organization’s adoption of defensive cyber deception. Through our use of the framework, we identified eighteen different factors which affect an organization’s adoption of defensive cyber deception. These factors are the product of the empirical data analysis from eight different semi-structured interview with individuals from six different organizations in Norway. The main theoretical implications of our research is the introduction of a TOE model for defensive cyber deception, focusing specifically on organizations in Norway as well as contributing with a maturity estimate model for defensive cyber deception. For the practical implications of our research, we have identified seven different benefits that defensive cyber deception provides. We are also con- tributing to raising the awareness of defensive cyber deception in Norwegian research and we hope that our TOE model can aid organizations that are considering adopting the tech- nology. We hope that these implications and contributions can act as a spark for both the adoption of defensive cyber deception in organizations as well as the start of a new wave for the cyber security researchers within Norway. Keywords: Cyber Security, Defensive Cyber Deception, TOE Framework, Adoptio

    Resilient and Scalable Forwarding for Software-Defined Networks with P4-Programmable Switches

    Get PDF
    Traditional networking devices support only fixed features and limited configurability. Network softwarization leverages programmable software and hardware platforms to remove those limitations. In this context the concept of programmable data planes allows directly to program the packet processing pipeline of networking devices and create custom control plane algorithms. This flexibility enables the design of novel networking mechanisms where the status quo struggles to meet high demands of next-generation networks like 5G, Internet of Things, cloud computing, and industry 4.0. P4 is the most popular technology to implement programmable data planes. However, programmable data planes, and in particular, the P4 technology, emerged only recently. Thus, P4 support for some well-established networking concepts is still lacking and several issues remain unsolved due to the different characteristics of programmable data planes in comparison to traditional networking. The research of this thesis focuses on two open issues of programmable data planes. First, it develops resilient and efficient forwarding mechanisms for the P4 data plane as there are no satisfying state of the art best practices yet. Second, it enables BIER in high-performance P4 data planes. BIER is a novel, scalable, and efficient transport mechanism for IP multicast traffic which has only very limited support of high-performance forwarding platforms yet. The main results of this thesis are published as 8 peer-reviewed and one post-publication peer-reviewed publication. The results cover the development of suitable resilience mechanisms for P4 data planes, the development and implementation of resilient BIER forwarding in P4, and the extensive evaluations of all developed and implemented mechanisms. Furthermore, the results contain a comprehensive P4 literature study. Two more peer-reviewed papers contain additional content that is not directly related to the main results. They implement congestion avoidance mechanisms in P4 and develop a scheduling concept to find cost-optimized load schedules based on day-ahead forecasts

    Efficient Security Protocols for Constrained Devices

    Get PDF
    During the last decades, more and more devices have been connected to the Internet.Today, there are more devices connected to the Internet than humans.An increasingly more common type of devices are cyber-physical devices.A device that interacts with its environment is called a cyber-physical device.Sensors that measure their environment and actuators that alter the physical environment are both cyber-physical devices.Devices connected to the Internet risk being compromised by threat actors such as hackers.Cyber-physical devices have become a preferred target for threat actors since the consequence of an intrusion disrupting or destroying a cyber-physical system can be severe.Cyber attacks against power and energy infrastructure have caused significant disruptions in recent years.Many cyber-physical devices are categorized as constrained devices.A constrained device is characterized by one or more of the following limitations: limited memory, a less powerful CPU, or a limited communication interface.Many constrained devices are also powered by a battery or energy harvesting, which limits the available energy budget.Devices must be efficient to make the most of the limited resources.Mitigating cyber attacks is a complex task, requiring technical and organizational measures.Constrained cyber-physical devices require efficient security mechanisms to avoid overloading the systems limited resources.In this thesis, we present research on efficient security protocols for constrained cyber-physical devices.We have implemented and evaluated two state-of-the-art protocols, OSCORE and Group OSCORE.These protocols allow end-to-end protection of CoAP messages in the presence of untrusted proxies.Next, we have performed a formal protocol verification of WirelessHART, a protocol for communications in an industrial control systems setting.In our work, we present a novel attack against the protocol.We have developed a novel architecture for industrial control systems utilizing the Digital Twin concept.Using a state synchronization protocol, we propagate state changes between the digital and physical twins.The Digital Twin can then monitor and manage devices.We have also designed a protocol for secure ownership transfer of constrained wireless devices. Our protocol allows the owner of a wireless sensor network to transfer control of the devices to a new owner.With a formal protocol verification, we can guarantee the security of both the old and new owners.Lastly, we have developed an efficient Private Stream Aggregation (PSA) protocol.PSA allows devices to send encrypted measurements to an aggregator.The aggregator can combine the encrypted measurements and calculate the decrypted sum of the measurements.No party will learn the measurement except the device that generated it
    • …
    corecore