2,017 research outputs found

    A New Two-dimensional Model-based Subspace Method for Large-scale Unconstrained Derivative-free Optimization: 2D-MoSub

    Full text link
    This paper proposes the method 2D-MoSub (2-dimensional model-based subspace method), which is a novel derivative-free optimization (DFO) method based on the subspace method for general unconstrained optimization and especially aims to solve large-scale DFO problems. 2D-MoSub combines 2-dimensional quadratic interpolation models and trust-region techniques to iteratively update the points and explore the 2-dimensional subspace. 2D-MoSub's framework includes initialization, constructing the interpolation set, building the quadratic interpolation model, performing trust-region trial steps, and updating the trust-region radius and subspace. Experimental results demonstrate the effectiveness and efficiency of 2D-MoSub in solving a variety of optimization problems.Comment: 22 page

    Limited-memory BFGS Systems with Diagonal Updates

    Get PDF
    In this paper, we investigate a formula to solve systems of the form (B + {\sigma}I)x = y, where B is a limited-memory BFGS quasi-Newton matrix and {\sigma} is a positive constant. These types of systems arise naturally in large-scale optimization such as trust-region methods as well as doubly-augmented Lagrangian methods. We show that provided a simple condition holds on B_0 and \sigma, the system (B + \sigma I)x = y can be solved via a recursion formula that requies only vector inner products. This formula has complexity M^2n, where M is the number of L-BFGS updates and n >> M is the dimension of x

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page

    On affine scaling inexact dogleg methods for bound-constrained nonlinear systems

    Get PDF
    Within the framework of affine scaling trust-region methods for bound constrained problems, we discuss the use of a inexact dogleg method as a tool for simultaneously handling the trust-region and the bound constraints while seeking for an approximate minimizer of the model. Focusing on bound-constrained systems of nonlinear equations, an inexact affine scaling method for large scale problems, employing the inexact dogleg procedure, is described. Global convergence results are established without any Lipschitz assumption on the Jacobian matrix, and locally fast convergence is shown under standard assumptions. Convergence analysis is performed without specifying the scaling matrix used to handle the bounds, and a rather general class of scaling matrices is allowed in actual algorithms. Numerical results showing the performance of the method are also given
    • …
    corecore