370 research outputs found

    AI-based design methodologies for hot form quench (HFQ®)

    Get PDF
    This thesis aims to develop advanced design methodologies that fully exploit the capabilities of the Hot Form Quench (HFQ®) stamping process in stamping complex geometric features in high-strength aluminium alloy structural components. While previous research has focused on material models for FE simulations, these simulations are not suitable for early-phase design due to their high computational cost and expertise requirements. This project has two main objectives: first, to develop design guidelines for the early-stage design phase; and second, to create a machine learning-based platform that can optimise 3D geometries under hot stamping constraints, for both early and late-stage design. With these methodologies, the aim is to facilitate the incorporation of HFQ capabilities into component geometry design, enabling the full realisation of its benefits. To achieve the objectives of this project, two main efforts were undertaken. Firstly, the analysis of aluminium alloys for stamping deep corners was simplified by identifying the effects of corner geometry and material characteristics on post-form thinning distribution. New equation sets were proposed to model trends and design maps were created to guide component design at early stages. Secondly, a platform was developed to optimise 3D geometries for stamping, using deep learning technologies to incorporate manufacturing capabilities. This platform combined two neural networks: a geometry generator based on Signed Distance Functions (SDFs), and an image-based manufacturability surrogate model. The platform used gradient-based techniques to update the inputs to the geometry generator based on the surrogate model's manufacturability information. The effectiveness of the platform was demonstrated on two geometry classes, Corners and Bulkheads, with five case studies conducted to optimise under post-stamped thinning constraints. Results showed that the platform allowed for free morphing of complex geometries, leading to significant improvements in component quality. The research outcomes represent a significant contribution to the field of technologically advanced manufacturing methods and offer promising avenues for future research. The developed methodologies provide practical solutions for designers to identify optimal component geometries, ensuring manufacturing feasibility and reducing design development time and costs. The potential applications of these methodologies extend to real-world industrial settings and can significantly contribute to the continued advancement of the manufacturing sector.Open Acces

    Responsive Building Envelope for Grid-Interactive Efficient Buildings – Thermal Performance and Control

    Get PDF
    The building sector accounts for 30% of total energy consumption worldwide. Responsive building envelopes (or RBEs) are one of the approaches to achieving net-zero energy and grid-interactive efficient buildings. However, research and development of RBEs are still in the early stages of technologies, simulation, control, and design. The control strategies in prior studies did not fully explore the potential of RBEs or they obtained good performance with high design and deployment costs. A low-cost strategy that does not require knowledge of complex systems is needed, while no studies have investigated online implementations of model-free control approaches for RBEs. To address these challenges, this dissertation describes a multidisciplinary study of the modeling, control, and design of RBEs, to understand mechanisms governing their dynamic properties and synthesis rules of multiple technologies through simulation analyses. Widely applicable mathematical models are developed that can be easily extended for multiple RBE types with validation. Computational frameworks (or co-simulation testbeds) that flexibly integrate multiple control methods and building simulation models are established with higher computation efficiency than that using commercial software during offline training. To overcome the limitations of the control strategies (e.g., rule-based control and MPC) in prior research, a novel easy-to-implement yet flexible ‘demand-based’ control strategy, and model-free online control strategies using deep reinforced learning are proposed for RBEs composed of active insulation systems (AISs). Both the physics-derived and model-free control strategies fully leverage the advantages of AISs and provide higher energy savings and thermal comfort improvement over traditional temperature-based control methods in prior research and demand-based control. The case studies of RBEs that integrate AISs and high thermal mass or self-adaptive/active modules (e.g., evaporative cooling techniques and dynamic glazing/shading) demonstrate the superior performance of AISs in regulating thermal energy transfer to offset AC demands during the synergy. Moreover, the controller design and training implications are elaborated. The applicability assessment of promising RBE configurations is presented along with design implications based on building energy analyses in multiple scenarios. The design and control implications represent an interactive and holistic way to operate RBEs allowing energy and thermal comfort performances to be tuned for maximum efficiency

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Engineering for a changing world: 60th Ilmenau Scientific Colloquium, Technische Universität Ilmenau, September 04-08, 2023 : programme

    Get PDF
    In 2023, the Ilmenau Scientific Colloquium is once more organised by the Department of Mechanical Engineering. The title of this year’s conference “Engineering for a Changing World” refers to limited natural resources of our planet, to massive changes in cooperation between continents, countries, institutions and people – enabled by the increased implementation of information technology as the probably most dominant driver in many fields. The Colloquium, supplemented by workshops, is characterised but not limited to the following topics: – Precision engineering and measurement technology Nanofabrication – Industry 4.0 and digitalisation in mechanical engineering – Mechatronics, biomechatronics and mechanism technology – Systems engineering – Productive teaming - Human-machine collaboration in the production environment The topics are oriented on key strategic aspects of research and teaching in Mechanical Engineering at our university

    Undergraduate and Graduate Course Descriptions, 2023 Spring

    Get PDF
    Wright State University undergraduate and graduate course descriptions from Spring 2023

    Efficient image-based rendering

    Get PDF
    Recent advancements in real-time ray tracing and deep learning have significantly enhanced the realism of computer-generated images. However, conventional 3D computer graphics (CG) can still be time-consuming and resource-intensive, particularly when creating photo-realistic simulations of complex or animated scenes. Image-based rendering (IBR) has emerged as an alternative approach that utilizes pre-captured images from the real world to generate realistic images in real-time, eliminating the need for extensive modeling. Although IBR has its advantages, it faces challenges in providing the same level of control over scene attributes as traditional CG pipelines and accurately reproducing complex scenes and objects with different materials, such as transparent objects. This thesis endeavors to address these issues by harnessing the power of deep learning and incorporating the fundamental principles of graphics and physical-based rendering. It offers an efficient solution that enables interactive manipulation of real-world dynamic scenes captured from sparse views, lighting positions, and times, as well as a physically-based approach that facilitates accurate reproduction of the view dependency effect resulting from the interaction between transparent objects and their surrounding environment. Additionally, this thesis develops a visibility metric that can identify artifacts in the reconstructed IBR images without observing the reference image, thereby contributing to the design of an effective IBR acquisition pipeline. Lastly, a perception-driven rendering technique is developed to provide high-fidelity visual content in virtual reality displays while retaining computational efficiency.Jüngste Fortschritte im Bereich Echtzeit-Raytracing und Deep Learning haben den Realismus computergenerierter Bilder erheblich verbessert. Konventionelle 3DComputergrafik (CG) kann jedoch nach wie vor zeit- und ressourcenintensiv sein, insbesondere bei der Erstellung fotorealistischer Simulationen von komplexen oder animierten Szenen. Das bildbasierte Rendering (IBR) hat sich als alternativer Ansatz herauskristallisiert, bei dem vorab aufgenommene Bilder aus der realen Welt verwendet werden, um realistische Bilder in Echtzeit zu erzeugen, so dass keine umfangreiche Modellierung erforderlich ist. Obwohl IBR seine Vorteile hat, ist es eine Herausforderung, das gleiche Maß an Kontrolle über Szenenattribute zu bieten wie traditionelle CG-Pipelines und komplexe Szenen und Objekte mit unterschiedlichen Materialien, wie z.B. transparente Objekte, akkurat wiederzugeben. In dieser Arbeit wird versucht, diese Probleme zu lösen, indem die Möglichkeiten des Deep Learning genutzt und die grundlegenden Prinzipien der Grafik und des physikalisch basierten Renderings einbezogen werden. Sie bietet eine effiziente Lösung, die eine interaktive Manipulation von dynamischen Szenen aus der realen Welt ermöglicht, die aus spärlichen Ansichten, Beleuchtungspositionen und Zeiten erfasst wurden, sowie einen physikalisch basierten Ansatz, der eine genaue Reproduktion des Effekts der Sichtabhängigkeit ermöglicht, der sich aus der Interaktion zwischen transparenten Objekten und ihrer Umgebung ergibt. Darüber hinaus wird in dieser Arbeit eine Sichtbarkeitsmetrik entwickelt, mit der Artefakte in den rekonstruierten IBR-Bildern identifiziert werden können, ohne das Referenzbild zu betrachten, und die somit zur Entwicklung einer effektiven IBR-Erfassungspipeline beiträgt. Schließlich wird ein wahrnehmungsgesteuertes Rendering-Verfahren entwickelt, um visuelle Inhalte in Virtual-Reality-Displays mit hoherWiedergabetreue zu liefern und gleichzeitig die Rechenleistung zu erhalten

    Self-assembled artificial cilia actuator

    Get PDF
    Department of Mechanical EngineeringSlender hair-like cilia are observed in many living organisms. Cilia carry out important roles, such as locomotion, fluid control, fluid diffusion, and cleaning, owing to their high aspect ratio structure. Inspired by cilia in nature, artificial cilia actuators are being extensively developed. An artificial cilia actuator can generate shape morphing and actuation under external stimuli, such as pneumatic, electric-field, light, thermal, and chemical stimuli as well as a magnetic field. Pneumatic cilia actuators have a large driving force compared to their weight and are easy to manufacture. However, they cannot be miniaturized to a microscale, like cilia in nature, because additional components such as pumps and cables are essential. Electric cilia can be manufactured on a microscale and can actuate dynamicallyhowever, their applications are limited owing to their high voltage requirements. Light, chemical, and thermal stimuli-based cilia actuators can also be miniaturized on a microscale, but they have slow response times and do not easily generate the desired actuation. On the other hand, magnetic actuators can be miniaturized, controlled precisely, are non-invasive, and can be driven immediately. Owing to these advantages, cilia actuators based on magnetic fields have been intensively investigated. Magnetic cilia actuators are mainly constructed using a top-down approach. In this approach, a template mold with a lithographically defined hole array is replicated with a magnetic-particle mixture solution, which enables the reliable fabrication of magnetic cilia with controlled geometry. However, with this technique, synthetic cilia with nanoscopic diameters that are nearly the size of biological cilia are difficult to access owing to the limited pattern resolution of the lithographically prepared template and high viscosity of the composite solution. In addition, the aspect ratio of cilia is limited because the cilia may structurally collapse during a demolding step of the molding process. The self-assembly approach has emerged as a solution to the limitations of the top-down approach. This approach fabricates a desired structure by manipulating a driving force that moves particles, and it has strong potential for constructing a cilia array with a nanoscale size and high aspect ratio structure. The Langmuir???Blodgett conventional self-assembly technique can precisely control particles. However, this technique typically produces close-packed two-dimensional monolayer or three-dimensional lattice structures. Recently, spray-based and DNA-based self-assembly techniques were conducted to construct a vertical structure. However, spray-based self-assembly has random spatial distributions without controllability of the array geometry. DNA-based self-assembly has a complex processtherefore, obtaining a high aspect ratio is challenging. We propose a programmable self-assembly strategy that can direct magnetic particles into a highly ordered responsive artificial cilia actuator. The resulting cilia display several structural features, such as diameters of single-particle resolution, controllable diameters and lengths spanning from nanometers to micrometers, and accurate positioning. The proposed strategy is based on the vapor state, which minimizes intermolecular interaction, and precise magnetic-field control using a Ni island. The self-assembled artificial cilia can maintain their structural integrity through interparticle interactions. Interestingly, the cilia can exhibit a field-responsive actuation motion through ???rolling and sliding??? between assembled particles instead of bending the entire ciliary beam. We demonstrate that oleic acid used to coat the particles acts as a lubricating bearing and enables the rolling/sliding-based actuation of the cilia. We further demonstrate that both magnetic nanocilia and microcilia can dynamically and immediately actuate in response to modulated magnetic fields while providing different stroke ranges and actuation torques.ope

    Changing Priorities. 3rd VIBRArch

    Full text link
    In order to warrant a good present and future for people around the planet and to safe the care of the planet itself, research in architecture has to release all its potential. Therefore, the aims of the 3rd Valencia International Biennial of Research in Architecture are: - To focus on the most relevant needs of humanity and the planet and what architectural research can do for solving them. - To assess the evolution of architectural research in traditionally matters of interest and the current state of these popular and widespread topics. - To deepen in the current state and findings of architectural research on subjects akin to post-capitalism and frequently related to equal opportunities and the universal right to personal development and happiness. - To showcase all kinds of research related to the new and holistic concept of sustainability and to climate emergency. - To place in the spotlight those ongoing works or available proposals developed by architectural researchers in order to combat the effects of the COVID-19 pandemic. - To underline the capacity of architectural research to develop resiliency and abilities to adapt itself to changing priorities. - To highlight architecture's multidisciplinarity as a melting pot of multiple approaches, points of view and expertise. - To open new perspectives for architectural research by promoting the development of multidisciplinary and inter-university networks and research groups. For all that, the 3rd Valencia International Biennial of Research in Architecture is open not only to architects, but also for any academic, practitioner, professional or student with a determination to develop research in architecture or neighboring fields.Cabrera Fausto, I. (2023). Changing Priorities. 3rd VIBRArch. Editorial Universitat Politècnica de València. https://doi.org/10.4995/VIBRArch2022.2022.1686

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp
    corecore