3 research outputs found

    A trust model using edge nodes and cuckoo filter for securing vanet under nlos conditions

    Get PDF
    Trust, as a key element of security, has a vital role in securing vehicular ad-hoc networks (VANETs). Malicious and selfish nodes by generating inaccurate information, have undesirable impacts on the trustworthiness of the VANET environment. Obstacles also have a negative impact on data trustworthiness by restricting direct communication between nodes. In this study, a trust model based on plausibility, experience, and type of vehicle is presented to cope with inaccurate, incomplete and uncertainty data under both line of sight (LoS) and none-line of sight (NLoS) conditions. In addition, a model using the k-nearest neighbor (kNN) classification algorithm based on feature similarity and symmetry is developed to detect the NLoS condition. Radio signal strength indicator (RSSI), packet reception rate (PDR) and the distance between two vehicle nodes are the features used in the proposed kNN algorithm. Moreover, due to the big data generated in VANET, secure communication between vehicle and edge node is designed using the Cuckoo filter. All obtained results are validated through well-known evaluation measures such as precision, recall, overall accuracy, and communication overhead. The results indicate that the proposed trust model has a better performance as compared to the attack-resistant trust management (ART) scheme and weighted voting (WV) approach. Additionally, the proposed trust model outperforms both ART and WV approaches under diffierent patterns of attack such as a simple attack, opinion tampering attack, and cunning attack. Monte-Carlo simulation results also prove validity of the proposed trust model

    A security and privacy scheme based on node and message authentication and trust in fog-enabled VANET

    Get PDF
    Security and privacy are the most important concerns related to vehicular ad hoc network (VANET), as it is an open-access and self-organized network. The presence of ‘selfish’ nodes distributed in the network are taken into account as an important challenge and as a security threat in VANET. A selfish node is a legitimate vehicle node which tries to achieve the most benefit from the network by broadcasting wrong information. An efficient and proper security model can be useful to tackle advances from attackers, as well as selfish nodes. In this study, a privacy-preserving node and message authentication scheme, along with a trust model was developed. The proposed node authentication ensures the legitimacy of the vehicle nodes, whereas the message authentication was developed to ensure the message's integrity. To deal with selfish nodes, an experience-based trust model was also designed. Additionally, to fulfill the privacy-preserving aspect, the mapping of each vehicle was performed using a different pseudo-identity. In this paper, fog nodes instead of road-side units (RSUs), were distributed along the roadside. This was mainly because of the fact that fog computing reduces latency, and results in increased throughput. Security analysis indicated that our scheme met the VANETs' security requirements. In addition, the performance analysis showed that the proposed scheme had a lower communication and computation overhead, compared to the other related works. Monte-Carlo simulation results were applied to estimate the false-positive rates (FPR), which also proved the validity of the proposed security scheme

    A Trust Management Framework for Vehicular Ad Hoc Networks

    Get PDF
    The inception of Vehicular Ad Hoc Networks (VANETs) provides an opportunity for road users and public infrastructure to share information that improves the operation of roads and the driver experience. However, such systems can be vulnerable to malicious external entities and legitimate users. Trust management is used to address attacks from legitimate users in accordance with a user’s trust score. Trust models evaluate messages to assign rewards or punishments. This can be used to influence a driver’s future behaviour or, in extremis, block the driver. With receiver-side schemes, various methods are used to evaluate trust including, reputation computation, neighbour recommendations, and storing historical information. However, they incur overhead and add a delay when deciding whether to accept or reject messages. In this thesis, we propose a novel Tamper-Proof Device (TPD) based trust framework for managing trust of multiple drivers at the sender side vehicle that updates trust, stores, and protects information from malicious tampering. The TPD also regulates, rewards, and punishes each specific driver, as required. Furthermore, the trust score determines the classes of message that a driver can access. Dissemination of feedback is only required when there is an attack (conflicting information). A Road-Side Unit (RSU) rules on a dispute, using either the sum of products of trust and feedback or official vehicle data if available. These “untrue attacks” are resolved by an RSU using collaboration, and then providing a fixed amount of reward and punishment, as appropriate. Repeated attacks are addressed by incremental punishments and potentially driver access-blocking when conditions are met. The lack of sophistication in this fixed RSU assessment scheme is then addressed by a novel fuzzy logic-based RSU approach. This determines a fairer level of reward and punishment based on the severity of incident, driver past behaviour, and RSU confidence. The fuzzy RSU controller assesses judgements in such a way as to encourage drivers to improve their behaviour. Although any driver can lie in any situation, we believe that trustworthy drivers are more likely to remain so, and vice versa. We capture this behaviour in a Markov chain model for the sender and reporter driver behaviours where a driver’s truthfulness is influenced by their trust score and trust state. For each trust state, the driver’s likelihood of lying or honesty is set by a probability distribution which is different for each state. This framework is analysed in Veins using various classes of vehicles under different traffic conditions. Results confirm that the framework operates effectively in the presence of untrue and inconsistent attacks. The correct functioning is confirmed with the system appropriately classifying incidents when clarifier vehicles send truthful feedback. The framework is also evaluated against a centralized reputation scheme and the results demonstrate that it outperforms the reputation approach in terms of reduced communication overhead and shorter response time. Next, we perform a set of experiments to evaluate the performance of the fuzzy assessment in Veins. The fuzzy and fixed RSU assessment schemes are compared, and the results show that the fuzzy scheme provides better overall driver behaviour. The Markov chain driver behaviour model is also examined when changing the initial trust score of all drivers
    corecore