142 research outputs found

    Trust Management: Multimodal Data Perspective

    Get PDF

    An efficient and versatile approach to trust and reputation using hierarchical Bayesian modelling

    No full text
    In many dynamic open systems, autonomous agents must interact with one another to achieve their goals. Such agents may be self-interested and, when trusted to perform an action, may betray that trust by not performing the action as required. Due to the scale and dynamism of these systems, agents will often need to interact with other agents with which they have little or no past experience. Each agent must therefore be capable of assessing and identifying reliable interaction partners, even if it has no personal experience with them. To this end, we present HABIT, a Hierarchical And Bayesian Inferred Trust model for assessing how much an agent should trust its peers based on direct and third party information. This model is robust in environments in which third party information is malicious, noisy, or otherwise inaccurate. Although existing approaches claim to achieve this, most rely on heuristics with little theoretical foundation. In contrast, HABIT is based exclusively on principled statistical techniques: it can cope with multiple discrete or continuous aspects of trustee behaviour; it does not restrict agents to using a single shared representation of behaviour; it can improve assessment by using any observed correlation between the behaviour of similar trustees or information sources; and it provides a pragmatic solution to the whitewasher problem (in which unreliable agents assume a new identity to avoid bad reputation). In this paper, we describe the theoretical aspects of HABIT, and present experimental results that demonstrate its ability to predict agent behaviour in both a simulated environment, and one based on data from a real-world webserver domain. In particular, these experiments show that HABIT can predict trustee performance based on multiple representations of behaviour, and is up to twice as accurate as BLADE, an existing state-of-the-art trust model that is both statistically principled and has been previously shown to outperform a number of other probabilistic trust models

    Enhancing trustability in MMOGs environments

    Get PDF
    Massively Multiplayer Online Games (MMOGs; e.g., World of Warcraft), virtual worlds (VW; e.g., Second Life), social networks (e.g., Facebook) strongly demand for more autonomic, security, and trust mechanisms in a way similar to humans do in the real life world. As known, this is a difficult matter because trusting in humans and organizations depends on the perception and experience of each individual, which is difficult to quantify or measure. In fact, these societal environments lack trust mechanisms similar to those involved in humans-to-human interactions. Besides, interactions mediated by compute devices are constantly evolving, requiring trust mechanisms that keep the pace with the developments and assess risk situations. In VW/MMOGs, it is widely recognized that users develop trust relationships from their in-world interactions with others. However, these trust relationships end up not being represented in the data structures (or databases) of such virtual worlds, though they sometimes appear associated to reputation and recommendation systems. In addition, as far as we know, the user is not provided with a personal trust tool to sustain his/her decision making while he/she interacts with other users in the virtual or game world. In order to solve this problem, as well as those mentioned above, we propose herein a formal representation of these personal trust relationships, which are based on avataravatar interactions. The leading idea is to provide each avatar-impersonated player with a personal trust tool that follows a distributed trust model, i.e., the trust data is distributed over the societal network of a given VW/MMOG. Representing, manipulating, and inferring trust from the user/player point of view certainly is a grand challenge. When someone meets an unknown individual, the question is “Can I trust him/her or not?”. It is clear that this requires the user to have access to a representation of trust about others, but, unless we are using an open source VW/MMOG, it is difficult —not to say unfeasible— to get access to such data. Even, in an open source system, a number of users may refuse to pass information about its friends, acquaintances, or others. Putting together its own data and gathered data obtained from others, the avatar-impersonated player should be able to come across a trust result about its current trustee. For the trust assessment method used in this thesis, we use subjective logic operators and graph search algorithms to undertake such trust inference about the trustee. The proposed trust inference system has been validated using a number of OpenSimulator (opensimulator.org) scenarios, which showed an accuracy increase in evaluating trustability of avatars. Summing up, our proposal aims thus to introduce a trust theory for virtual worlds, its trust assessment metrics (e.g., subjective logic) and trust discovery methods (e.g., graph search methods), on an individual basis, rather than based on usual centralized reputation systems. In particular, and unlike other trust discovery methods, our methods run at interactive rates.MMOGs (Massively Multiplayer Online Games, como por exemplo, World of Warcraft), mundos virtuais (VW, como por exemplo, o Second Life) e redes sociais (como por exemplo, Facebook) necessitam de mecanismos de confiança mais autĂłnomos, capazes de assegurar a segurança e a confiança de uma forma semelhante Ă  que os seres humanos utilizam na vida real. Como se sabe, esta nĂŁo Ă© uma questĂŁo fĂĄcil. Porque confiar em seres humanos e ou organizaçÔes depende da percepção e da experiĂȘncia de cada indivĂ­duo, o que Ă© difĂ­cil de quantificar ou medir Ă  partida. Na verdade, esses ambientes sociais carecem dos mecanismos de confiança presentes em interacçÔes humanas presenciais. AlĂ©m disso, as interacçÔes mediadas por dispositivos computacionais estĂŁo em constante evolução, necessitando de mecanismos de confiança adequados ao ritmo da evolução para avaliar situaçÔes de risco. Em VW/MMOGs, Ă© amplamente reconhecido que os utilizadores desenvolvem relaçÔes de confiança a partir das suas interacçÔes no mundo com outros. No entanto, essas relaçÔes de confiança acabam por nĂŁo ser representadas nas estruturas de dados (ou bases de dados) do VW/MMOG especĂ­fico, embora Ă s vezes apareçam associados Ă  reputação e a sistemas de reputação. AlĂ©m disso, tanto quanto sabemos, ao utilizador nĂŁo lhe Ă© facultado nenhum mecanismo que suporte uma ferramenta de confiança individual para sustentar o seu processo de tomada de decisĂŁo, enquanto ele interage com outros utilizadores no mundo virtual ou jogo. A fim de resolver este problema, bem como os mencionados acima, propomos nesta tese uma representação formal para essas relaçÔes de confiança pessoal, baseada em interacçÔes avatar-avatar. A ideia principal Ă© fornecer a cada jogador representado por um avatar uma ferramenta de confiança pessoal que segue um modelo de confiança distribuĂ­da, ou seja, os dados de confiança sĂŁo distribuĂ­dos atravĂ©s da rede social de um determinado VW/MMOG. Representar, manipular e inferir a confiança do ponto de utilizador/jogador, Ă© certamente um grande desafio. Quando alguĂ©m encontra um indivĂ­duo desconhecido, a pergunta Ă© “Posso confiar ou nĂŁo nele?”. É claro que isto requer que o utilizador tenha acesso a uma representação de confiança sobre os outros, mas, a menos que possamos usar uma plataforma VW/MMOG de cĂłdigo aberto, Ă© difĂ­cil — para nĂŁo dizer impossĂ­vel — obter acesso aos dados gerados pelos utilizadores. Mesmo em sistemas de cĂłdigo aberto, um nĂșmero de utilizadores pode recusar partilhar informaçÔes sobre seus amigos, conhecidos, ou sobre outros. Ao juntar seus prĂłprios dados com os dados obtidos de outros, o utilizador/jogador representado por um avatar deve ser capaz de produzir uma avaliação de confiança sobre o utilizador/jogador com o qual se encontra a interagir. Relativamente ao mĂ©todo de avaliação de confiança empregue nesta tese, utilizamos lĂłgica subjectiva para a representação da confiança, e tambĂ©m operadores lĂłgicos da lĂłgica subjectiva juntamente com algoritmos de procura em grafos para empreender o processo de inferĂȘncia da confiança relativamente a outro utilizador. O sistema de inferĂȘncia de confiança proposto foi validado atravĂ©s de um nĂșmero de cenĂĄrios Open-Simulator (opensimulator.org), que mostrou um aumento na precisĂŁo na avaliação da confiança de avatares. Resumindo, a nossa proposta visa, assim, introduzir uma teoria de confiança para mundos virtuais, conjuntamente com mĂ©tricas de avaliação de confiança (por exemplo, a lĂłgica subjectiva) e em mĂ©todos de procura de caminhos de confiança (com por exemplo, atravĂ©s de mĂ©todos de pesquisa em grafos), partindo de uma base individual, em vez de se basear em sistemas habituais de reputação centralizados. Em particular, e ao contrĂĄrio de outros mĂ©todos de determinação do grau de confiança, os nossos mĂ©todos sĂŁo executados em tempo real

    On the Statistics of Trustworthiness Prediction

    Get PDF
    Trust and trustworthiness facilitate interactions between human beings worldwide, every day. They enable the formation of friendships, making of profits and the adoption of new technologies, making life not only more pleasant, but furthering the societal development. Trust, for lack of a better word, is good. When human beings trust, they rely on the trusted party to be trustworthy, that is, literally worthy of the trust that is being placed in them. If it turns out that the trusted party is unworthy of the trust placed into it, the truster has misplaced its trust, has unwarrantedly relied and is liable to experience possibly unpleasant consequences. Human social evolution has equipped us with tools for determining another’s trustworthiness through experience, cues and observations with which we aim to minimise the risk of misplacing our trust. Social adaptation, however, is a slow process and the cues that are helpful in real, physical environments where we can observe and hear our interlocutors are less helpful in interactions that are conducted over data networks with other humans or computers, or even between two computers. This presents a challenge in a world where the virtual and the physical intermesh increasingly. A challenge that computational trust models seek to address by applying computational evidence-based methods to estimate trustworthiness. In this thesis, the state-of-the-art in evidence-based trust models is extended and improved upon – in particular with regard to their statistical modelling. The statistics behind (Bayesian) trustworthiness estimation will receive special attention, their extension bringing about improvements in trustworthiness estimation that encompass the fol- lowing aspects: (i.) statistically well-founded estimators for binomial and multinomial models of trust that can accurately estimate the trustworthiness of another party and those that can express the inher- ent uncertainty of the trustworthiness estimate in a statistically meaningful way, (ii.) better integration of recommendations by third parties using advanced methods for determining the reliability of the received recommendations, (iii.) improved responsiveness to changes in the behaviour of trusted parties, and (iv.) increasing the generalisability of trust-relevant information over a set of trusted parties. Novel estimators, methods for combining recommendations and other trust- relevant information, change detectors, as well as a mapping for integrating stereotype-based trustworthiness estimates, are bundled in an improved Bayesian trust model, Multinomial CertainTrust. Specific scientific contributions are structured into three distinct categories: 1. A Model for Trustworthiness Estimation: The statistics of trustworthiness estimation are investigated to design fully multinomial trustworthiness estimation model. Leveraging the assumptions behind the Bayesian estimation of binomial and multinomial proportions, accurate trustworthiness and certainty estimators are presented, and the integration of subjectivity via informed and non-informed Bayesian priors is discussed. 2. Methods for Trustworthiness Information Processing: Methods for facilitating trust propagation and accounting for concept drift in the behaviour of the trusted parties are introduced. All methods are applicable, by design, to both the binomial case and the multinomial case of trustworthiness estimation. 3. Further extension for trustworthiness estimation: Two methods for addressing the potential lack of direct experiences with new trustee in feedback-based trust models are presented. For one, the dedicated modelling of particular roles and the trust delegation between them is shown to be principally possible as an extension to existing feedback- based trust models. For another, a more general approach for feature-based generalisation using model-free, supervised machine-learners, is introduced. The general properties of the trustworthiness and certainty estimators are derived formally from the basic assumptions underlying binomial and multinomial estimation problems, harnessing fundamentals of Bayesian statistics. Desired properties for the introduced certainty estimators, first postulated by Wang & Singh, are shown to hold through formal argument. The general soundness and applicability of the proposed certainty estimators is founded on the statistical properties of interval estimation techniques discussed in the related statistics work and formally and rigorously shown there. The core estimation system and additional methods, in their entirety constituting the Multinomial CertainTrust model, are implemented in R, along with competing methods from the related work, specifically for determining recommender trustworthiness and coping with changing behaviour through ageing. The performance of the novel methods introduced in this thesis was tested against established methods from the related work in simulations. Methods for hardcoding indicators of trustworthiness were implemented within a multi-agent framework and shown to be functional in an agent-based simulation. Furthermore, supervised machine-learners were tested for their applicability by collecting a real-world data set of reputation data from a hotel booking site and evaluating their capabilities against this data set. The hotel data set exhibits properties, such as a high imbalance in the ratings, that appears typical of data that is generated from reputation systems, as these are also present in other data sets

    A Trust Management Framework for Decision Support Systems

    Get PDF
    In the era of information explosion, it is critical to develop a framework which can extract useful information and help people to make “educated” decisions. In our lives, whether we are aware of it, trust has turned out to be very helpful for us to make decisions. At the same time, cognitive trust, especially in large systems, such as Facebook, Twitter, and so on, needs support from computer systems. Therefore, we need a framework that can effectively, but also intuitively, let people express their trust, and enable the system to automatically and securely summarize the massive amounts of trust information, so that a user of the system can make “educated” decisions, or at least not blind decisions. Inspired by the similarities between human trust and physical measurements, this dissertation proposes a measurement theory based trust management framework. It consists of three phases: trust modeling, trust inference, and decision making. Instead of proposing specific trust inference formulas, this dissertation proposes a fundamental framework which is flexible and can be adapted by many different inference formulas. Validation experiments are done on two data sets: the Epinions.com data set and the Twitter data set. This dissertation also adapts the measurement theory based trust management framework for two decision support applications. In the first application, the real stock market data is used as ground truth for the measurement theory based trust management framework. Basically, the correlation between the sentiment expressed on Twitter and stock market data is measured. Compared with existing works which do not differentiate tweets’ authors, this dissertation analyzes trust among stock investors on Twitter and uses the trust network to differentiate tweets’ authors. The results show that by using the measurement theory based trust framework, Twitter sentiment valence is able to reflect abnormal stock returns better than treating all the authors as equally important or weighting them by their number of followers. In the second application, the measurement theory based trust management framework is used to help to detect and prevent from being attacked in cloud computing scenarios. In this application, each single flow is treated as a measurement. The simulation results show that the measurement theory based trust management framework is able to provide guidance for cloud administrators and customers to make decisions, e.g. migrating tasks from suspect nodes to trustworthy nodes, dynamically allocating resources according to trust information, and managing the trade-off between the degree of redundancy and the cost of resources

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF
    • 

    corecore