59 research outputs found

    ワイヤレス通信のための先進的な信号処理技術を用いた非線形補償法の研究

    Get PDF
    The inherit nonlinearity in analogue front-ends of transmitters and receivers have had primary impact on the overall performance of the wireless communication systems, as it gives arise of substantial distortion when transmitting and processing signals with such circuits. Therefore, the nonlinear compensation (linearization) techniques become essential to suppress the distortion to an acceptable extent in order to ensure sufficient low bit error rate. Furthermore, the increasing demands on higher data rate and ubiquitous interoperability between various multi-coverage protocols are two of the most important features of the contemporary communication system. The former demand pushes the communication system to use wider bandwidth and the latter one brings up severe coexistence problems. Having fully considered the problems raised above, the work in this Ph.D. thesis carries out extensive researches on the nonlinear compensations utilizing advanced digital signal processing techniques. The motivation behind this is to push more processing tasks to the digital domain, as it can potentially cut down the bill of materials (BOM) costs paid for the off-chip devices and reduce practical implementation difficulties. The work here is carried out using three approaches: numerical analysis & computer simulations; experimental tests using commercial instruments; actual implementation with FPGA. The primary contributions for this thesis are summarized as the following three points: 1) An adaptive digital predistortion (DPD) with fast convergence rate and low complexity for multi-carrier GSM system is presented. Albeit a legacy system, the GSM, however, has a very strict requirement on the out-of-band emission, thus it represents a much more difficult hurdle for DPD application. It is successfully implemented in an FPGA without using any other auxiliary processor. A simplified multiplier-free NLMS algorithm, especially suitable for FPGA implementation, for fast adapting the LUT is proposed. Many design methodologies and practical implementation issues are discussed in details. Experimental results have shown that the DPD performed robustly when it is involved in the multichannel transmitter. 2) The next generation system (5G) will unquestionably use wider bandwidth to support higher throughput, which poses stringent needs for using high-speed data converters. Herein the analog-to-digital converter (ADC) tends to be the most expensive single device in the whole transmitter/receiver systems. Therefore, conventional DPD utilizing high-speed ADC becomes unaffordable, especially for small base stations (micro, pico and femto). A digital predistortion technique utilizing spectral extrapolation is proposed in this thesis, wherein with band-limited feedback signal, the requirement on ADC speed can be significantly released. Experimental results have validated the feasibility of the proposed technique for coping with band-limited feedback signal. It has been shown that adequate linearization performance can be achieved even if the acquisition bandwidth is less than the original signal bandwidth. The experimental results obtained by using LTE-Advanced signal of 320 MHz bandwidth are quite satisfactory, and to the authors’ knowledge, this is the first high-performance wideband DPD ever been reported. 3) To address the predicament that mobile operators do not have enough contiguous usable bandwidth, carrier aggregation (CA) technique is developed and imported into 4G LTE-Advanced. This pushes the utilization of concurrent dual-band transmitter/receiver, which reduces the hardware expense by using a single front-end. Compensation techniques for the respective concurrent dual-band transmitter and receiver front-ends are proposed to combat the inter-band modulation distortion, and simultaneously reduce the distortion for the both lower-side band and upper-side band signals.電気通信大学201

    A 802.11g and UMTS Simultaneous Reception Front-End Architecture using a double IQ structure

    Get PDF
    International audienceIn this paper, we address the architecture of multistandard simultaneous reception receivers and we aim to reduce the complexity of the analog front-end. To this end, we propose an architecture using the double orthogonal translation technique in order to multiplex two signals received on different frequency bands. A study case concerning the simultaneous reception of 802.11g and UMTS signals is developed in this paper. Theoretical and simulation results show that this type of multiplexing does not significantly influence the evolution of the signal to noise ratio of the signals

    Pipeline analog-to-digital converters for wide-band wireless communications

    Get PDF
    During the last decade, the development of the analog electronics has been dictated by the enormous growth of the wireless communications. Typical for the new communication standards has been an evolution towards higher data rates, which allows more services to be provided. Simultaneously, the boundary between analog and digital signal processing is moving closer to the antenna, thus aiming for a software defined radio. For analog-to-digital converters (ADCs) of radio receivers this indicates higher sample rate, wider bandwidth, higher resolution, and lower power dissipation. The radio receiver architectures, showing the greatest potential to meet the commercial trends, include the direct conversion receiver and the super heterodyne receiver with an ADC sampling at the intermediate frequency (IF). The pipelined ADC architecture, based on the switched capacitor (SC) technique, has most successfully covered the widely separated resolution and sample rate requirements of these receiver architectures. In this thesis, the requirements of ADCs in both of these receiver architectures are studied using the system specifications of the 3G WCDMA standard. From the standard and from the limited performance of the circuit building blocks, design constraints for pipeline ADCs, at the architectural and circuit level, are drawn. At the circuit level, novel topologies for all the essential blocks of the pipeline ADC have been developed. These include a dual-mode operational amplifier, low-power voltage reference circuits with buffering, and a floating-bulk bootstrapped switch for highly-linear IF-sampling. The emphasis has been on dynamic comparators: a new mismatch insensitive topology is proposed and measurement results for three different topologies are presented. At the architectural level, the optimization of the ADCs in the single-chip direct conversion receivers is discussed: the need for small area, low power, suppression of substrate noise, input and output interfaces, etc. Adaptation of the resolution and sample rate of a pipeline ADC, to be used in more flexible multi-mode receivers, is also an important topic included. A 6-bit 15.36-MS/s embedded CMOS pipeline ADC and an 8-bit 1/15.36-MS/s dual-mode CMOS pipeline ADC, optimized for low-power single-chip direct conversion receivers with single-channel reception, have been designed. The bandwidth of a pipeline ADC can be extended by employing parallelism to allow multi-channel reception. The errors resulted from mismatch of parallel signal paths are analyzed and their elimination is presented. Particularly, an optimal partitioning of the resolution between the stages, and the number of parallel channels, in time-interleaved ADCs are derived. A low-power 10-bit 200-MS/s CMOS parallel pipeline ADC employing double sampling and a front-end sample-and-hold (S/H) circuit is implemented. Emphasis of the thesis is on high-resolution pipeline ADCs with IF-sampling capability. The resolution is extended beyond the limits set by device matching by using calibration, while time interleaving is applied to widen the signal bandwidth. A review of calibration and error averaging techniques is presented. A simple digital self-calibration technique to compensate capacitor mismatch within a single-channel pipeline ADC, and the gain and offset mismatch between the channels of a time-interleaved ADC, is developed. The new calibration method is validated with two high-resolution BiCMOS prototypes, a 13-bit 50-MS/s single-channel and a 14-bit 160-MS/s parallel pipeline ADC, both utilizing a highly linear front-end allowing sampling from 200-MHz IF-band.reviewe

    Wide-band mixing DACs with high spectral purity

    Get PDF

    Integrated radio frequency synthetizers for wireless applications

    Get PDF
    This thesis consists of six publications and an overview of the research topic, which is also a summary of the work. The research described in this thesis concentrates on the design of phase-locked loop radio frequency synthesizers for wireless applications. In particular, the focus is on the implementation of the prescaler, the phase detector, and the chargepump. This work reviews the requirements set for the frequency synthesizer by the wireless standards, and how these requirements are derived from the system specifications. These requirements apply to both integer-N and fractional-N synthesizers. The work also introduces the special considerations related to the design of fractional-N phase-locked loops. Finally, implementation alternatives for the different building blocks of the synthesizer are reviewed. The presented work introduces new topologies for the phase detector and the chargepump, and improved topologies for high speed CMOS prescalers. The experimental results show that the presented topologies can be successfully used in both integer-N and fractional-N synthesizers with state-of-the-art performance. The last part of this work discusses the additional considerations that surface when the synthesizer is integrated into a larger system chip. It is shown experimentally that the synthesizer can be successfully integrated into a complex transceiver IC without sacrificing the performance of the synthesizer or the transceiver.reviewe

    Auxiliary-Path-Assisted Digital Linearization of Wideband Wireless Receivers

    Get PDF
    Wireless communication systems in recent years have aimed at increasing data rates by ensuring flexible and efficient use of the radio spectrum. The dernier cri in this field has been in the area of carrier aggregation and cognitive radio. Carrier aggregation is a major component of LTE-Advanced. With carrier aggregation, a number of separate LTE carriers can be combined, by mobile network operators, to increase peak data rates and overall network capacity. Cognitive radios, on the other hand, allow efficient spectrum usage by locating and using spatially vacant spectral bands. High monolithic integration in these application fields can be achieved by employing receiver architectures such as the wideband direct conversion receiver topology. This is advantageous from the view point of cost, power consumption and size. However, many challenges exist, of particular importance is nonlinear distortion arising from analog front-end components such as low noise amplifiers (LNA). Nonlinear distortions especially become severe when several signals of varying amplitudes are received simultaneously. In such cases, nonlinear distortions stemming from strong signals may deteriorate the reception of the weaker signals, and also impair the receiver’s spectrum sensing capabilities. Nonlinearity, usually a consequence of dynamic range limitation, degrades performance in wideband multi-operator communications systems, and it will have a notable role in future wireless communication system design. This thesis presents a digital domain linearization technique that employs a very nonlinear auxiliary receiver path for nonlinear distortion cancellation. The proposed linearization technique relies on one-time adaptively-determined linearization coefficients for cancelling nonlinear distortions. Specifically, we take a look at canceling the troublesome in-band third order intermodulation products using the proposed technique. The proposed technique can be extended to cancel out both even and higher order odd intermodulation products. Dynamic behavioral models are used to account for RF nonlinearities, including memory effects which cannot be ignored in the wideband scenario. Since the proposed linearization technique involves the use of two receiver paths, techniques for correcting phase delays between the two paths are also introduced. Simplicity is the hallmark of the proposed linearization technique. It can achieve up to +30 dBm in IIP3 performance with ADC resolution being a major performance bottleneck. It also shows strong tolerance to strong blocker nonlinearities

    Four-element phased-array beamformers and a self-interference canceling full-duplex transciver in 130-nm SiGe for 5G applications at 26 GHz

    Get PDF
    This thesis is on the design of radio-frequency (RF) integrated front-end circuits for next generation 5G communication systems. The demand for higher data rates and lower latency in 5G networks can only be met using several new technologies including, but not limited to, mm-waves, massive-MIMO, and full-duplex. Use of mm-waves provides more bandwidth that is necessary for high data rates at the cost of increased attenuation in air. Massive-MIMO arrays are required to compensate for this increased path loss by providing beam steering and array gain. Furthermore, full duplex operation is desirable for improved spectrum efficiency and reduced latency. The difficulty of full duplex operation is the self-interference (SI) between transmit (TX) and receive (RX) paths. Conventional methods to suppress this interference utilize either bulky circulators, isolators, couplers or two separate antennas. These methods are not suitable for fully-integrated full-duplex massive-MIMO arrays. This thesis presents circuit and system level solutions to the issues summarized above, in the form of SiGe integrated circuits for 5G applications at 26 GHz. First, a full-duplex RF front-end architecture is proposed that is scalable to massive-MIMO arrays. It is based on blind, RF self-interference cancellation that is applicable to single/shared antenna front-ends. A high resolution RF vector modulator is developed, which is the key building block that empowers the full-duplex frontend architecture by achieving better than state-of-the-art 10-b monotonic phase control. This vector modulator is combined with linear-in-dB variable gain amplifiers and attenuators to realize a precision self-interference cancellation circuitry. Further, adaptive control of this SI canceler is made possible by including an on-chip low-power IQ downconverter. It correlates copies of transmitted and received signals and provides baseband/dc outputs that can be used to adaptively control the SI canceler. The solution comes at the cost of minimal additional circuitry, yet significantly eases linearity requirements of critical receiver blocks at RF/IF such as mixers and ADCs. Second, to complement the proposed full-duplex front-end architecture and to provide a more complete solution, high-performance beamformer ICs with 5-/6- b phase and 3-/4-b amplitude control capabilities are designed. Single-channel, separate transmitter and receiver beamformers are implemented targeting massive- MIMO mode of operation, and their four-channel versions are developed for phasedarray communication systems. Better than state-of-the-art noise performance is obtained in the RX beamformer channel, with a full-channel noise figure of 3.3 d
    corecore