25 research outputs found

    A Triclustering Approach for Time Evolving Graphs

    Full text link
    This paper introduces a novel technique to track structures in time evolving graphs. The method is based on a parameter free approach for three-dimensional co-clustering of the source vertices, the target vertices and the time. All these features are simultaneously segmented in order to build time segments and clusters of vertices whose edge distributions are similar and evolve in the same way over the time segments. The main novelty of this approach lies in that the time segments are directly inferred from the evolution of the edge distribution between the vertices, thus not requiring the user to make an a priori discretization. Experiments conducted on a synthetic dataset illustrate the good behaviour of the technique, and a study of a real-life dataset shows the potential of the proposed approach for exploratory data analysis

    Discovering Patterns in Time-Varying Graphs: A Triclustering Approach

    Get PDF
    International audienceThis paper introduces a novel technique to track structures in time varying graphs. The method uses a maximum a posteriori approach for adjusting a three-dimensional co-clustering of the source vertices, the destination vertices and the time, to the data under study, in a way that does not require any hyper-parameter tuning. The three dimensions are simultaneously segmented in order to build clusters of source vertices, destination vertices and time segments where the edge distributions across clusters of vertices follow the same evolution over the time segments. The main novelty of this approach lies in that the time segments are directly inferred from the evolution of the edge distribution between the vertices, thus not requiring the user to make any a priori quantization. Experiments conducted on artificial data illustrate the good behavior of the technique, and a study of a real-life data set shows the potential of the proposed approach for exploratory data analysis

    Block modelling in dynamic networks with non-homogeneous Poisson processes and exact ICL

    Full text link
    We develop a model in which interactions between nodes of a dynamic network are counted by non homogeneous Poisson processes. In a block modelling perspective, nodes belong to hidden clusters (whose number is unknown) and the intensity functions of the counting processes only depend on the clusters of nodes. In order to make inference tractable we move to discrete time by partitioning the entire time horizon in which interactions are observed in fixed-length time sub-intervals. First, we derive an exact integrated classification likelihood criterion and maximize it relying on a greedy search approach. This allows to estimate the memberships to clusters and the number of clusters simultaneously. Then a maximum-likelihood estimator is developed to estimate non parametrically the integrated intensities. We discuss the over-fitting problems of the model and propose a regularized version solving these issues. Experiments on real and simulated data are carried out in order to assess the proposed methodology

    Exact ICL maximization in a non-stationary temporal extension of the stochastic block model for dynamic networks

    Full text link
    The stochastic block model (SBM) is a flexible probabilistic tool that can be used to model interactions between clusters of nodes in a network. However, it does not account for interactions of time varying intensity between clusters. The extension of the SBM developed in this paper addresses this shortcoming through a temporal partition: assuming interactions between nodes are recorded on fixed-length time intervals, the inference procedure associated with the model we propose allows to cluster simultaneously the nodes of the network and the time intervals. The number of clusters of nodes and of time intervals, as well as the memberships to clusters, are obtained by maximizing an exact integrated complete-data likelihood, relying on a greedy search approach. Experiments on simulated and real data are carried out in order to assess the proposed methodology

    Towards reinforcement learning based N­Clustering

    Get PDF
    Tese de Mestrado, Ciência de Dados, 2022, Universidade de Lisboa, Faculdade de CiênciasBiclustering and triclustering are becoming increasingly popular for unsupervised analysis of two­ and three­dimensional datasets. Among other patterns of interest, using n­clusters in unsupervised data analy sis can identify potential biological modules, illness progression profiles, and communities of individuals with consistent behaviour. Despite this, most algorithms still rely on exhaustive approaches to produce high­quality results. The main limitation of using deep learning to solve this task is that n­clusters are computed assuming that all elements are represented under equal distance. This assumption invalidates the use of locality simplification techniques like neural convolutions. Graphs are flexible structures that could represent a dataset where all elements are at an equal distance through fully connected graphs, thus encouraging the use of graph convolutional networks to learn their structure and generate accurate embeddings of the datasets. Because n­clustering is primarily viewed as an iterative task in which elements are added or re moved from a given cluster, a reinforcement learning framework is a good fit. Deep reinforcement learn ing agents have already been successfully coupled with graph convolutional networks to solve complex combinatorial optimization problems, motivating the adaptation of reinforcement learning architectures to this problem. This dissertation lays the foundations for a novel reinforcement learning approach for n­clustering that could outperform state of the art algorithms while implementing a more efficient algorithm. To this end, three libraries were implemented: a synthetic data generator, a framework that models n­clustering tasks as Markov decision process, and a training library. A proximal policy­based agent was implemented and tunned using population­based training, to evaluate the behaviour of the reinforcement learning en vironments designed. Results show that agents can learn to modify their behaviour while interacting with the environment to maximize their reward signal. However, they are still far from being a solution to n­clustering. This dissertation is the first step towards this solution. Finally, future steps to improve these results are pro posed. This dissertation has presented foundational work that enables modelling n­clustering as an MDP, paving the way for further studies focused on improving task performance.Os seres humanos evoluíram para encontrar padrões. Esta capacidade está presente na nossa vida quotidiana, e não sobreviveríamos sem ela. Na realidade, esta é uma característica que parecemos partilhar com todos os seres inteligentes, a necessidade de compreender padrões e de criar rotinas. Os padrões são lugares seguros onde podemos agir conscientemente, onde as relações causais que ligam as nossas acções às suas consequências são conhecidas por nós. A compreensão de um padrão pode ser a diferença entre vida e morte, o suave som de folhas pode implicar um ataque mortal, a presença de humidade no solo pode indicar um riacho próximo, enquanto um cheiro pode ajudar a distinguir entre amigo ou inimigo. Encontrar padrões e distinguir entre padrões e acontecimentos aleatórios permitiu à nossa sociedade chegar tão longe. Hoje, enfrentamos problemas mais complexos em quase todos os campos de estudo científicos e sociais, por vezes escondidos por detrás de quantidades massivas de eventos aleatórios. É literalmente como encontrar uma agulha num palheiro. Como tal, recorremos mais uma vez a máquinas para nos ajudar neste empreendimento desafiante. Técnicas de aprendizagem sem supervisão começaram a ser propostas por estatísticos e matemáticos muito antes do aparecimento de campos como a prospecção de dados. No entanto, estes campos, juntamente com um significativo interesse restaurado na área pela indústria, na esperança de rentabilizar grandes quantidades de dados guardados ao longo dos anos, deram grandes passos em frente. Nos últimos anos, temos visto muitos avanços notáveis neste campo e uma nova face da inteligência artificial em geral (por exemplo, aprendizagem de máquinas, aprendizagem profunda). Foram propostas abordagens de clusters revigoradas que combinavam técnicas clássicas com aprendizagem profunda para gerar representações precisas e produzir clusters a partir destes vectores de dados. Biclustering e triclustering estão a tornar-­se cada vez mais populares para análises não supervisionadas de conjuntos de dados bidimensionais e tridimensionais. Entre outros padrões de interesse, a utilização de n­clusters na análise não supervisionada de dados pode identificar potenciais módulos biológicos, perfis de progressão de doenças, e comunidades de indivíduos com comportamento consistente. Nos domínios médicos, as aplicações possíveis incluem a análise de sinais fisiológicos multivariados, onde os n­clusters identificados podem capturar respostas fisiológicas coerentes para um grupo de indivíduos; análise de dados de neuroimagem, onde os n­clusters podem capturar funções de resposta hemodinâmica e conectividade entre regiões cerebrais; e análise de registos clínicos, onde os n­clusters podem corresponder a grupos de pacientes com características clínicas correlacionadas ao longo do tempo. Relativamente aos domínios sociais, as aplicações possíveis vão desde a análise de redes sociais até à descoberta de comunidades de indivíduos com actividade e interacção correlacionadas (frequentemente referidas como comunidades em evolução coerente) ou conteúdos de grupo de acordo com o perfil do utilizador; grupos de utilizadores com padrões de navegação coerentes nos dados de utilização da web; análise de dados de comércio electrónico para encontrar padrões de navegação ocultos de conjuntos cor relacionados de utilizadores (web), páginas (web) visitadas, e operações ao longo do tempo; análise de dados de pesquisa de marketing para estudar a utilidade perceptível de vários produtos para diferentes fins, a julgar por diferentes grupos demográficos; dados de filtragem colaborativa para descobrir correlações accionáveis para sistemas de recomendação ou utilizadores de grupo com preferências semelhantes, entre outras aplicações. O clustering tradicional pode ser utilizado para agrupar observações neste contexto, mas a sua utili dade é limitada porque as observações neste domínio de dados são tipicamente apenas significativamente correlacionadas em subespaços do espaço global. Apesar da importância de n­clustering, a maioria dos algoritmos continua a basear­se em abordagens exaustivas para produzir resultados de qualidade. Como o n­clustering é uma tarefa complexa de opti mização combinatória, as abordagens existentes limitam a estrutura permitida, a coerência e a qualidade da solução. A principal limitação da utilização de aprendizagem profunda para resolver esta tarefa é que os n clusters são computados assumindo que todos os elementos são representados sob igual distância. Este pressuposto invalida o uso de técnicas de simplificação da localidade como as convoluções neurais. Os grafos são estruturas flexíveis que podem ser utilizadas para representar um conjunto de dados onde todos os elementos estão a uma distância igual, através de grafos completos, encorajando assim a utilização de redes convolucionais de grafos para aprender a sua estrutura e gerar representações precisas dos conjuntos de dados. Uma vez que o n­clustering é visto principalmente como uma tarefa iterativa em que os elemen tos são adicionados ou removidos de um dado cluster, uma estrutura de aprendizagem de reforço é um bom suporte. Agentes de aprendizagem de reforço profundos já foram acoplados com sucesso a redes convolucionais de grafos para resolver problemas complexos de otimização combinatória, motivando a adaptação de arquitecturas de aprendizagem de reforço a este problema. Esta dissertação lança as bases para uma nova abordagem de aprendizagem por reforço para n clustering que poderia superar os algoritmos de estado da arte, ao mesmo tempo que implementa um algoritmo mais eficiente. Para este fim, foram implementadas três bibliotecas: um gerador de dados sintéticos, uma framework que modela as tarefas de n­clustering como um processo de decisão de Markov, e uma biblioteca de treino. NclustGen foi implementado para melhorar a utilização programática dos geradores de dados sintéti cos de biclustering e triclustering de última geração. O NclustEnv modela n­clustering como um processo de decisão Markov através da implementação de ambientes de biclustering e triclustering. Segue a interface padrão de programação de aplicações proposta pelo Gym para ambientes de aprendizagem por reforço. A implementação de ambientes de qualidade que modelam a interação entre um agente e uma tarefa de n­clustering é da maior importância. Ao implementar esta tarefa utilizando o padrão Gym, o ambi ente pode ser implementado como agente agnóstico. Assim, qualquer agente será capaz de treinar neste ambiente, se correctamente configurado, independentemente da sua implementação. Esta capacidade de construir ambientes que modelam uma dada tarefa de uma forma agnóstica permite a implementação de uma framework geral para n­clustering baseada em aprendizagem por reforço. Os agentes podem depois utilizar esta framework de treino para encontrar uma solução de última geração para esta tarefa. A fim de avaliar o comportamento dos ambientes de aprendizagem por reforço que foram concebidos, foi implementado e calibrado um agente de optimização proximal de políticas utilizando treino baseado em populações. Um agente de optimização proximal de políticas foi escolhido porque pode servir como uma boa base para experiências futuras. Devido à sua versatilidade, os agentes de optimização proximal de políticas são largamente considerados como os agentes de referência para experiências em ambientes não explorados. A solução e as limitações alcançadas por este agente normalmente dão pelo menos uma ideia dos seguintes passos a tomar se o agente não conseguir alcançar uma boa solução. Os resultados mostram que os agentes podem aprender a modificar o seu comportamento enquanto interagem com o ambiente para maximizar o seu sinal de recompensa. No entanto, ainda estão longe de ser uma solução para o n­clustering. Esta dissertação é o primeiro passo para esta solução e apresentou o trabalho fundamental, mas ainda há muito mais trabalho a ser feito para que esta abordagem possa ultrapassar os algoritmos mais avança dos.Por fim, são propostos os próximos passos para melhorar estes resultados, e que para num futuro próximo, esta abordagem possa vir a resolver a tarefa do n­clustering

    Exact ICL maximization in a non-stationary time extension of the latent block model for dynamic networks

    Get PDF
    The latent block model (LBM) is a flexible probabilistic tool to describe interactions between node sets in bipartite networks, but it does not account for interactions of time varying intensity between nodes in unknown classes. In this paper we propose a non stationary temporal extension of the LBM that clusters simultaneously the two node sets of a bipartite network and constructs classes of time intervals on which interactions are stationary. The number of clusters as well as the membership to classes are obtained by maximizing the exact complete-data integrated likelihood relying on a greedy search approach. Experiments on simulated and real data are carried out in order to assess the proposed methodology.Comment: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 2015, Bruges, Belgium. pp.225-230, 2015, Proceedings of the 23-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2015

    Graphs in machine learning: an introduction

    Full text link
    Graphs are commonly used to characterise interactions between objects of interest. Because they are based on a straightforward formalism, they are used in many scientific fields from computer science to historical sciences. In this paper, we give an introduction to some methods relying on graphs for learning. This includes both unsupervised and supervised methods. Unsupervised learning algorithms usually aim at visualising graphs in latent spaces and/or clustering the nodes. Both focus on extracting knowledge from graph topologies. While most existing techniques are only applicable to static graphs, where edges do not evolve through time, recent developments have shown that they could be extended to deal with evolving networks. In a supervised context, one generally aims at inferring labels or numerical values attached to nodes using both the graph and, when they are available, node characteristics. Balancing the two sources of information can be challenging, especially as they can disagree locally or globally. In both contexts, supervised and un-supervised, data can be relational (augmented with one or several global graphs) as described above, or graph valued. In this latter case, each object of interest is given as a full graph (possibly completed by other characteristics). In this context, natural tasks include graph clustering (as in producing clusters of graphs rather than clusters of nodes in a single graph), graph classification, etc. 1 Real networks One of the first practical studies on graphs can be dated back to the original work of Moreno [51] in the 30s. Since then, there has been a growing interest in graph analysis associated with strong developments in the modelling and the processing of these data. Graphs are now used in many scientific fields. In Biology [54, 2, 7], for instance, metabolic networks can describe pathways of biochemical reactions [41], while in social sciences networks are used to represent relation ties between actors [66, 56, 36, 34]. Other examples include powergrids [71] and the web [75]. Recently, networks have also been considered in other areas such as geography [22] and history [59, 39]. In machine learning, networks are seen as powerful tools to model problems in order to extract information from data and for prediction purposes. This is the object of this paper. For more complete surveys, we refer to [28, 62, 49, 45]. In this section, we introduce notations and highlight properties shared by most real networks. In Section 2, we then consider methods aiming at extracting information from a unique network. We will particularly focus on clustering methods where the goal is to find clusters of vertices. Finally, in Section 3, techniques that take a series of networks into account, where each network i

    Co-Clustering Network-Constrained Trajectory Data

    Full text link
    Recently, clustering moving object trajectories kept gaining interest from both the data mining and machine learning communities. This problem, however, was studied mainly and extensively in the setting where moving objects can move freely on the euclidean space. In this paper, we study the problem of clustering trajectories of vehicles whose movement is restricted by the underlying road network. We model relations between these trajectories and road segments as a bipartite graph and we try to cluster its vertices. We demonstrate our approaches on synthetic data and show how it could be useful in inferring knowledge about the flow dynamics and the behavior of the drivers using the road network

    Modelling time evolving interactions in networks through a non stationary extension of stochastic block models

    Get PDF
    National audienceIn this paper, we focus on the stochastic block model (SBM),a probabilistic tool describing interactions between nodes of a network using latent clusters. The SBM assumes that the networkhas a stationary structure, in which connections of time varying intensity are not taken into account. In other words, interactions between two groups are forced to have the same features during the whole observation time. To overcome this limitation,we propose a partition of the whole time horizon, in which interactions are observed, and develop a non stationary extension of the SBM,allowing to simultaneously cluster the nodes in a network along with fixed time intervals in which the interactions take place. The number of clusters (K for nodes, D for time intervals) as well as the class memberships are finallyobtained through maximizing the complete-data integrated likelihood by means of a greedy search approach. After showing that the model works properly with simulated data, we focus on a real data set. We thus consider the three days ACM Hypertext conference held in Turin,June 29th - July 1st 2009. Proximity interactions between attendees during the first day are modelled and an interestingclustering of the daily hours is finally obtained, with times of social gathering (e.g. coffee breaks) recovered by the approach. Applications to large networks are limited due to the computational complexity of the greedy search which is dominated bythe number KmaxK_{max} and DmaxD_{max} of clusters used in the initialization. Therefore,advanced clustering tools are considered to reduce the number of clusters expected in the data, making the greedy search applicable to large networks.Le modèle à blocs stochastiques (SBM) décrit les interactions entre les sommets d'un graphe selon une approche probabiliste, basée sur des classes latentes. SBM fait l'hypothèse implicite que le graphe est stationnaire. Par conséquent, les interactions entre deux classes sont supposées avoir la même intensité pendant toute la période d'activité. Pour relaxer l'hypothèse de stationnarité, nous proposons une partition de l'horizon temporel en sous intervalles disjoints, chacun de même longueur. Ensuite, nous proposons une extension de SBM qui nous permet de classer en même temps les sommets du graphe et les intervalles de temps où les interactions ont lieu. Le nombre de classes latentes (K pour les sommets, D pour les intervalles de temps) est enfin obtenu à travers la maximisation de la vraisemblance intégrée des données complétées (ICL exacte). Après avoir testé le modèle sur des données simulées, nous traitons un cas réel. Pendant une journée, les interactions parmi les participants de la conférence HCM Hypertext (Turin, 29 Juin – 1er Juillet 2009) ont été traitées. Notre méthodologie nous a permis d'obtenir une classifications intéressante des 24 heures: les moments de rencontre tels que les pauses café ou buffets ont bien été détectés. La complexité de l'algorithme de recherche, linéaire en fonction du nombre initial de clusters (KmaxK_{max} et DmaxD_{max} respectivement), nous oriente vers l'utilisation d'instruments avancés de classification, pour réduire le nombre attendu de classes latentes et ainsi pouvoir utiliser le modèle pour des réseaux de grand dimension

    A Partitioning Based Algorithm to Fuzzy Tricluster

    Get PDF
    Fuzzy clustering allows an object to exist in multiple clusters and represents the affiliation of objects to clusters by memberships. It is extended to fuzzy coclustering by assigning both objects and features membership functions. In this paper we propose a new fuzzy triclustering (FTC) algorithm for automatic categorization of three-dimensional data collections. FTC specifies membership function for each dimension and is able to generate fuzzy clusters simultaneously on three dimensions. Thus FTC divides a three-dimensional cube into many little blocks which should be triclusters with strong coherent bonding among its members. The experimental studies on MovieLens demonstrate the strength of FTC in terms of accuracy compared to some recent popular fuzzy clustering and coclustering approaches
    corecore