74 research outputs found

    Counting Answers to Existential Positive Queries: A Complexity Classification

    Full text link
    Existential positive formulas form a fragment of first-order logic that includes and is semantically equivalent to unions of conjunctive queries, one of the most important and well-studied classes of queries in database theory. We consider the complexity of counting the number of answers to existential positive formulas on finite structures and give a trichotomy theorem on query classes, in the setting of bounded arity. This theorem generalizes and unifies several known results on the complexity of conjunctive queries and unions of conjunctive queries.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0719

    A Trichotomy in the Complexity of Counting Answers to Conjunctive Queries

    Get PDF
    Conjunctive queries are basic and heavily studied database queries; in relational algebra, they are the select-project-join queries. In this article, we study the fundamental problem of counting, given a conjunctive query and a relational database, the number of answers to the query on the database. In particular, we study the complexity of this problem relative to sets of conjunctive queries. We present a trichotomy theorem, which shows essentially that this problem on a set of conjunctive queries is either tractable, equivalent to the parameterized CLIQUE problem, or as hard as the parameterized counting CLIQUE problem; the criteria describing which of these situations occurs is simply stated, in terms of graph-theoretic conditions

    The Logic of Counting Query Answers

    Full text link
    We consider the problem of counting the number of answers to a first-order formula on a finite structure. We present and study an extension of first-order logic in which algorithms for this counting problem can be naturally and conveniently expressed, in senses that are made precise and that are motivated by the wish to understand tractable cases of the counting problem

    Consistent Query Answering for Primary Keys on Rooted Tree Queries

    Full text link
    We study the data complexity of consistent query answering (CQA) on databases that may violate the primary key constraints. A repair is a maximal subset of the database satisfying the primary key constraints. For a Boolean query q, the problem CERTAINTY(q) takes a database as input, and asks whether or not each repair satisfies q. The computational complexity of CERTAINTY(q) has been established whenever q is a self-join-free Boolean conjunctive query, or a (not necessarily self-join-free) Boolean path query. In this paper, we take one more step towards a general classification for all Boolean conjunctive queries by considering the class of rooted tree queries. In particular, we show that for every rooted tree query q, CERTAINTY(q) is in FO, NL-hard ∩\cap LFP, or coNP-complete, and it is decidable (in polynomial time), given q, which of the three cases applies. We also extend our classification to larger classes of queries with simple primary keys. Our classification criteria rely on query homomorphisms and our polynomial-time fixpoint algorithm is based on a novel use of context-free grammar (CFG).Comment: To appear in PODS'2

    Answering Conjunctive Queries under Updates

    Full text link
    We consider the task of enumerating and counting answers to kk-ary conjunctive queries against relational databases that may be updated by inserting or deleting tuples. We exhibit a new notion of q-hierarchical conjunctive queries and show that these can be maintained efficiently in the following sense. During a linear time preprocessing phase, we can build a data structure that enables constant delay enumeration of the query results; and when the database is updated, we can update the data structure and restart the enumeration phase within constant time. For the special case of self-join free conjunctive queries we obtain a dichotomy: if a query is not q-hierarchical, then query enumeration with sublinear∗^\ast delay and sublinear update time (and arbitrary preprocessing time) is impossible. For answering Boolean conjunctive queries and for the more general problem of counting the number of solutions of k-ary queries we obtain complete dichotomies: if the query's homomorphic core is q-hierarchical, then size of the the query result can be computed in linear time and maintained with constant update time. Otherwise, the size of the query result cannot be maintained with sublinear update time. All our lower bounds rely on the OMv-conjecture, a conjecture on the hardness of online matrix-vector multiplication that has recently emerged in the field of fine-grained complexity to characterise the hardness of dynamic problems. The lower bound for the counting problem additionally relies on the orthogonal vectors conjecture, which in turn is implied by the strong exponential time hypothesis. ∗)^\ast) By sublinear we mean O(n1−ε)O(n^{1-\varepsilon}) for some ε>0\varepsilon>0, where nn is the size of the active domain of the current database

    Consistent Query Answering for Primary Keys and Conjunctive Queries with Counting

    Get PDF
    The problem of consistent query answering for primary keys and self-join-free conjunctive queries has been intensively studied in recent years and is by now well understood. In this paper, we study an extension of this problem with counting. The queries we consider count how many times each value occurs in a designated (possibly composite) column of an answer to a full conjunctive query. In a setting of database repairs, we adopt the semantics of [Arenas et al., ICDT 2001] which computes tight lower and upper bounds on these counts, where the bounds are taken over all repairs. Ariel Fuxman defined in his PhD thesis a syntactic class of queries, called C_forest, for which this computation can be done by executing two first-order queries (one for lower bounds, and one for upper bounds) followed by simple counting steps. We use the term "parsimonious counting" for this computation. A natural question is whether C_forest contains all self-join-free conjunctive queries that admit parsimonious counting. We answer this question negatively. We define a new syntactic class of queries, called C_parsimony, and prove that it contains all (and only) self-join-free conjunctive queries that admit parsimonious counting.Comment: 27 pages, 2 figure

    An Analytical Study of Large SPARQL Query Logs

    Full text link
    With the adoption of RDF as the data model for Linked Data and the Semantic Web, query specification from end- users has become more and more common in SPARQL end- points. In this paper, we conduct an in-depth analytical study of the queries formulated by end-users and harvested from large and up-to-date query logs from a wide variety of RDF data sources. As opposed to previous studies, ours is the first assessment on a voluminous query corpus, span- ning over several years and covering many representative SPARQL endpoints. Apart from the syntactical structure of the queries, that exhibits already interesting results on this generalized corpus, we drill deeper in the structural char- acteristics related to the graph- and hypergraph represen- tation of queries. We outline the most common shapes of queries when visually displayed as pseudographs, and char- acterize their (hyper-)tree width. Moreover, we analyze the evolution of queries over time, by introducing the novel con- cept of a streak, i.e., a sequence of queries that appear as subsequent modifications of a seed query. Our study offers several fresh insights on the already rich query features of real SPARQL queries formulated by real users, and brings us to draw a number of conclusions and pinpoint future di- rections for SPARQL query evaluation, query optimization, tuning, and benchmarking
    • …
    corecore