191,464 research outputs found

    A Tree-Based Context Model for Object Recognition

    Get PDF
    There has been a growing interest in exploiting contextual information in addition to local features to detect and localize multiple object categories in an image. A context model can rule out some unlikely combinations or locations of objects and guide detectors to produce a semantically coherent interpretation of a scene. However, the performance benefit of context models has been limited because most of the previous methods were tested on datasets with only a few object categories, in which most images contain one or two object categories. In this paper, we introduce a new dataset with images that contain many instances of different object categories, and propose an efficient model that captures the contextual information among more than a hundred object categories using a tree structure. Our model incorporates global image features, dependencies between object categories, and outputs of local detectors into one probabilistic framework. We demonstrate that our context model improves object recognition performance and provides a coherent interpretation of a scene, which enables a reliable image querying system by multiple object categories. In addition, our model can be applied to scene understanding tasks that local detectors alone cannot solve, such as detecting objects out of context or querying for the most typical and the least typicalscenes in a dataset.This research was partially funded by Shell International Exploration and Production Inc., by Army Research Office under award W911NF-06-1-0076, by NSF Career Award (ISI 0747120), and by the Air Force Office of Scientific Research under Award No.FA9550-06-1-0324. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Air Force

    A Tree-Based Context Model for Object Recognition

    Full text link

    Context-Aware Zero-Shot Recognition

    Full text link
    We present a novel problem setting in zero-shot learning, zero-shot object recognition and detection in the context. Contrary to the traditional zero-shot learning methods, which simply infers unseen categories by transferring knowledge from the objects belonging to semantically similar seen categories, we aim to understand the identity of the novel objects in an image surrounded by the known objects using the inter-object relation prior. Specifically, we leverage the visual context and the geometric relationships between all pairs of objects in a single image, and capture the information useful to infer unseen categories. We integrate our context-aware zero-shot learning framework into the traditional zero-shot learning techniques seamlessly using a Conditional Random Field (CRF). The proposed algorithm is evaluated on both zero-shot region classification and zero-shot detection tasks. The results on Visual Genome (VG) dataset show that our model significantly boosts performance with the additional visual context compared to traditional methods

    Multi-Object Classification and Unsupervised Scene Understanding Using Deep Learning Features and Latent Tree Probabilistic Models

    Get PDF
    Deep learning has shown state-of-art classification performance on datasets such as ImageNet, which contain a single object in each image. However, multi-object classification is far more challenging. We present a unified framework which leverages the strengths of multiple machine learning methods, viz deep learning, probabilistic models and kernel methods to obtain state-of-art performance on Microsoft COCO, consisting of non-iconic images. We incorporate contextual information in natural images through a conditional latent tree probabilistic model (CLTM), where the object co-occurrences are conditioned on the extracted fc7 features from pre-trained Imagenet CNN as input. We learn the CLTM tree structure using conditional pairwise probabilities for object co-occurrences, estimated through kernel methods, and we learn its node and edge potentials by training a new 3-layer neural network, which takes fc7 features as input. Object classification is carried out via inference on the learnt conditional tree model, and we obtain significant gain in precision-recall and F-measures on MS-COCO, especially for difficult object categories. Moreover, the latent variables in the CLTM capture scene information: the images with top activations for a latent node have common themes such as being a grasslands or a food scene, and on on. In addition, we show that a simple k-means clustering of the inferred latent nodes alone significantly improves scene classification performance on the MIT-Indoor dataset, without the need for any retraining, and without using scene labels during training. Thus, we present a unified framework for multi-object classification and unsupervised scene understanding

    Detecting Visual Relationships with Deep Relational Networks

    Full text link
    Relationships among objects play a crucial role in image understanding. Despite the great success of deep learning techniques in recognizing individual objects, reasoning about the relationships among objects remains a challenging task. Previous methods often treat this as a classification problem, considering each type of relationship (e.g. "ride") or each distinct visual phrase (e.g. "person-ride-horse") as a category. Such approaches are faced with significant difficulties caused by the high diversity of visual appearance for each kind of relationships or the large number of distinct visual phrases. We propose an integrated framework to tackle this problem. At the heart of this framework is the Deep Relational Network, a novel formulation designed specifically for exploiting the statistical dependencies between objects and their relationships. On two large datasets, the proposed method achieves substantial improvement over state-of-the-art.Comment: To be appeared in CVPR 2017 as an oral pape
    • …
    corecore