2,788 research outputs found

    Continuously Providing Approximate Results under Limited Resources: Load Shedding and Spilling in XML Streams

    Get PDF
    Because of the high volume and unpredictable arrival rates, stream processing systems may not always be able to keep up with the input data streams, resulting in buffer overflow and uncontrolled loss of data. To continuously supply online results, two alternate solutions to tackle this problem of unpredictable failures of such overloaded systems can be identified. One technique, called load shedding, drops some fractions of data from the input stream to reduce the memory and CPU requirements of the workload. However, dropping some portions of the input data means that the accuracy of the output is reduced since some data is lost. To produce eventually complete results, the second technique, called data spilling, pushes some fractions of data to persistent storage temporarily when the processing speed cannot keep up with the arrival rate. The processing of the disk resident data is then postponed until a later time when system resources become available. This dissertation explores these load reduction technologies in the context of XML stream systems. Load shedding in the specific context of XML streams poses several unique opportunities and challenges. Since XML data is hierarchical, subelements, extracted from different positions of the XML tree structure, may vary in their importance. Further, dropping different subelements may vary in their savings of storage and computation. Hence, unlike prior work in the literature that drops data completely or not at all, in this dissertation we introduce the notion of structure-oriented load shedding, meaning selectively some XML subelements are shed from the possibly complex XML objects in the XML stream. First we develop a preference model that enables users to specify the relative importance of preserving different subelements within the XML result structure. This transforms shedding into the problem of rewriting the user query into shed queries that return approximate answers with their utility as measured by the user preference model. Our optimizer finds the appropriate shed queries to maximize the output utility driven by our structure-based preference model under the limitation of available computation resources. The experimental results demonstrate that our proposed XML-specific shedding solution consistently achieves higher utility results compared to the existing relational shedding techniques. Second, we introduces structure-based spilling, a spilling technique customized for XML streams by considering the spilling of partial substructures of possibly complex XML elements. Several new challenges caused by structure-based spilling are addressed. When a path is spilled, multiple other paths may be affected. We categorize varying types of spilling side effects on the query caused by spilling. How to execute the reduced query to produce the correct runtime output is also studied. Three optimization strategies are developed to select the reduced query that maximizes the output quality. We also examine the clean-up stage to guarantee that an entire result set is eventually generated by producing supplementary results to complement the partial results output earlier. The experimental study demonstrates that our proposed solutions consistently achieve higher quality results compared to the state-of-the-art techniques. Third, we design an integrated framework that combines both shedding and spilling policies into one comprehensive methodology. Decisions on the choice of whether to shed or spill data may be affected by the application needs and data arrival patterns. For some input data, it may be worth to flush it to disk if a delayed output of its result will be important, while other data would best directly dropped from the system given that a delayed delivery of these results would no longer be meaningful to the application. Therefore we need sophisticated technologies capable of deploying both shedding and spilling techniques within one integrated strategy with the ability to deliver the most appropriate decision customers need for each specific circumstance. We propose a novel flexible framework for structure-based shed and spill approaches, applicable in any XML stream system. We propose a solution space that represents all the shed and spill candidates. An age-based quality model is proposed for evaluating the output quality for different reduced query and supplementary query pairs. We also propose a family of four optimization strategies, OptF, OptSmart, HiX and Fex. OptF and OptSmart are both guaranteed to identify an optimal solution of reduced and supplementary query pair, with OptSmart exhibiting significantly less overhead than OptF. HiX and Fex use heuristic-based approaches that are much more efficient than OptF and OptSmart

    Term-Specific Eigenvector-Centrality in Multi-Relation Networks

    Get PDF
    Fuzzy matching and ranking are two information retrieval techniques widely used in web search. Their application to structured data, however, remains an open problem. This article investigates how eigenvector-centrality can be used for approximate matching in multi-relation graphs, that is, graphs where connections of many different types may exist. Based on an extension of the PageRank matrix, eigenvectors representing the distribution of a term after propagating term weights between related data items are computed. The result is an index which takes the document structure into account and can be used with standard document retrieval techniques. As the scheme takes the shape of an index transformation, all necessary calculations are performed during index tim

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    The XFM view adaptation mechanism: An essential component for XML data warehouses

    Get PDF
    In the past few years, with many organisations providing web services for business and communication purposes, large volumes of XML transactions take place on a daily basis. In many cases, organisations maintain these transactions in their native XML format due to its flexibility for xchanging data between heterogeneous systems. This XML data provides an important resource for decision support systems. As a consequence, XML technology has slowly been included within decision support systems of data warehouse systems. The problem encountered is that existing native XML database systems suffer from poor performance in terms of managing data volume and response time for complex analytical queries. Although materialised XML views can be used to improve the performance for XML data warehouses, update problems then become the bottleneck of using materialised views. Specifically, synchronising materialised views in the face of changing view definitions, remains a significant issue. In this dissertation, we provide a method for XML-based data warehouses to manage updates caused by the change of view definitions (view redefinitions), which is referred to as the view adaptation problem. In our approach, views are defined using XPath and then modelled using a set of novel algebraic operators and fragments. XPath views are integrated into a single view graph called the XML Fragment Materialisation (XFM) View Graph, where common parts between different views are shared and appear only once in the graph. Fragments within the view graph can be selected for materialisation to facilitate the view adaptation process. While changes are applied, our view adaptation algorithms can quickly determine what part of the XFM view graph is affected. The adaptation algorithms then perform a structural adaptation to update the view graph, followed by data adaptation to update materialised fragments

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Scaling SDI systems via query clustering and aggregation

    Get PDF
    Master'sMASTER OF SCIENC

    Utility-driven load shedding for xml stream processing

    Full text link
    corecore