117 research outputs found

    Federated Query Processing for the Semantic Web

    Get PDF
    The recent years have witnessed a constant growth in the amount of RDF data available on the Web. This growth is largely based on the increasing rate of data publication on the Web by different actors such governments, life science researchers or geographical institutes. RDF data generation is mainly done by converting already existing legacy data resources into RDF (e.g. converting data stored in relational databases into RDF), but also by creating that RDF data directly (e.g. sensors). These RDF data are normally exposed by means of Linked Data-enabled URIs and SPARQL endpoints. Given the sustained growth that we are experiencing in the number of SPARQL endpoints available, the need to be able to send federated SPARQL queries across them has also grown. Tools for accessing sets of RDF data repositories are starting to appear, differing between them on the way in which they allow users to access these data (allowing users to specify directly what RDF data set they want to query, or making this process transparent to them). To overcome this heterogeneity in federated query processing solutions, the W3C SPARQL working group is defining a federation extension for SPARQL 1.1, which allows combining in a single query, graph patterns that can be evaluated in several endpoints. In this PhD thesis, we describe the syntax of that SPARQL extension for providing access to distributed RDF data sets and formalise its semantics. We adapt existing techniques for distributed data access in relational databases in order to deal with SPARQL endpoints, which we have implemented in our federation query evaluation system (SPARQL-DQP). We describe the static optimisation techniques that we implemented in our system and we carry out a series of experiments that show that our optimisations significantly speed up the query evaluation process in presence of large query results and optional operator

    Database Optimization Aspects for Information Retrieval

    Get PDF
    There is a growing need for systems that can process queries, combining both structured data and text. One way to provide such functionality is to integrate information retrieval (IR) techniques in a database management system (DBMS). However, both IR and database research have been separate research fields for decades, resulting in different - even conflicting - approaches to data management. Each DBMS has a component called a "query optimizer", which plays a crucial role in the efficiency and flexibility of the system. So, for successful integration the IR techniques and data structures, as well as the DBMS query optimizer, should be adapted to enable mutual cooperation. The author concentrates on top-N queries - a common class of IR queries. An IR top-N query asks for the N best documents given a set of keywords. The author proposes processing the data in batches as a compromise between IR and DBMS query processing. Experiments with this technique show that porting IR optimization techniques is (still) not a promising option due to the additional administrative overhead. Two new mathematical models are introduced to eliminate this overhead: a model that predicts selectivity, which is a crucial factor in the execution costs, and a model that predicts the quality of the top-N

    ‘Enhanced Encryption and Fine-Grained Authorization for Database Systems

    Get PDF
    The aim of this research is to enhance fine-grained authorization and encryption so that database systems are equipped with the controls necessary to help enterprises adhere to zero-trust security more effectively. For fine-grained authorization, this thesis has extended database systems with three new concepts: Row permissions, column masks and trusted contexts. Row permissions and column masks provide data-centric security so the security policy cannot be bypassed as with database views, for example. They also coexist in harmony with the rest of the database core tenets so that enterprises are not forced to compromise neither security nor database functionality. Trusted contexts provide applications in multitiered environments with a secure and controlled manner to propagate user identities to the database and therefore enable such applications to delegate the security policy to the database system where it is enforced more effectively. Trusted contexts also protect against application bypass so the application credentials cannot be abused to make database changes outside the scope of the application’s business logic. For encryption, this thesis has introduced a holistic database encryption solution to address the limitations of traditional database encryption methods. It too coexists in harmony with the rest of the database core tenets so that enterprises are not forced to choose between security and performance as with column encryption, for example. Lastly, row permissions, column masks, trusted contexts and holistic database encryption have all been implemented IBM DB2, where they are relied upon by thousands of organizations from around the world to protect critical data and adhere to zero-trust security more effectively

    Database system architecture supporting coexisting query languages and data models

    Get PDF
    SIGLELD:D48239/84 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Query Optimization Techniques For Scaling Up To Data Variety

    Get PDF
    Even though Data Lakes are efficient in terms of data storage, they increase the complexity of query processing; this can lead to expensive query execution. Hence, novel techniques for generating query execution plans are demanded. Those techniques have to be able to exploit the main characteristics of Data Lakes. Ontario is a federated query engine capable of processing queries over heterogeneous data sources. Ontario uses source descriptions based on RDF Molecule Templates, i.e., an abstract description of the properties belonging to the entities in the unified schema of the data in the Data Lake. This thesis proposes new heuristics tailored to the problem of query processing over heterogeneous data sources including heuristics specifically designed for certain data models. The proposed heuristics are integrated into the Ontario query optimizer. Ontario is compared to state-of-the-art RDF query engines in order to study the overhead introduced by considering heterogeneity during query processing. The results of the empirical evaluation suggest that there is no significant overhead when considering heterogeneity. Furthermore, the baseline version of Ontario is compared to two different sets of additional heuristics, i.e., heuristics specifically designed for certain data models and heuristics that do not consider the data model. The analysis of the obtained experimental results shows that source-specific heuristics are able to improve query performance. Ontario optimization techniques are able to generate effective and efficient query plans that can be executed over heterogeneous data sources in a Data Lake

    Natural Language Processing: Emerging Neural Approaches and Applications

    Get PDF
    This Special Issue highlights the most recent research being carried out in the NLP field to discuss relative open issues, with a particular focus on both emerging approaches for language learning, understanding, production, and grounding interactively or autonomously from data in cognitive and neural systems, as well as on their potential or real applications in different domains

    Enabling Graph Analysis Over Relational Databases

    Get PDF
    Complex interactions and systems can be modeled by analyzing the connections between underlying entities or objects described by a dataset. These relationships form networks (graphs), the analysis of which has been shown to provide tremendous value in areas ranging from retail to many scientific domains. This value is obtained by using various methodologies from network science-- a field which focuses on studying network representations in the real world. In particular "graph algorithms", which iteratively traverse a graph's connections, are often leveraged to gain insights. To take advantage of the opportunity presented by graph algorithms, there have been a variety of specialized graph data management systems, and analysis frameworks, proposed in recent years, which have made significant advances in efficiently storing and analyzing graph-structured data. Most datasets however currently do not reside in these specialized systems but rather in general-purpose relational database management systems (RDBMS). A relational or similarly structured system is typically governed by a schema of varying strictness that implements constraints and is meticulously designed for the specific enterprise. Such structured datasets contain many relationships between the entities therein, that can be seen as latent or "hidden" graphs that exist inherently inside the datasets. However, these relationships can only typically be traversed via conducting expensive JOINs using SQL or similar languages. Thus, in order for users to efficiently traverse these latent graphs to conduct analysis, data needs to be transformed and migrated to specialized systems. This creates barriers that hinder and discourage graph analysis; our vision is to break these barriers. In this dissertation we investigate the opportunities and challenges involved in efficiently leveraging relationships within data stored in structured databases. First, we present GraphGen, a lightweight software layer that is independent from the underlying database, and provides interfaces for graph analysis of data in RDBMSs. GraphGen is the first such system that introduces an intuitive high-level language for specifying graphs of interest, and utilizes in-memory graph representations to tackle the problems associated with analyzing graphs that are hidden inside structured datasets. We show GraphGen can analyze such graphs in orders of magnitude less memory, and often computation time, while eliminating manual Extract-Transform-Load (ETL) effort. Second, we examine how in-memory graph representations of RDBMS data can be used to enhance relational query processing. We present a novel, general framework for executing GROUP BY aggregation over conjunctive queries which avoids materialization of intermediate JOIN results, and wrap this framework inside a multi-way relational operator called Join-Agg. We show that Join-Agg can compute aggregates over a class of relational and graph queries using orders of magnitude less memory and computation time

    First CLIPS Conference Proceedings, volume 2

    Get PDF
    The topics of volume 2 of First CLIPS Conference are associated with following applications: quality control; intelligent data bases and networks; Space Station Freedom; Space Shuttle and satellite; user interface; artificial neural systems and fuzzy logic; parallel and distributed processing; enchancements to CLIPS; aerospace; simulation and defense; advisory systems and tutors; and intelligent control
    corecore