724 research outputs found

    A new 3-DOF 2T1R parallel mechanism: Topology design and kinematics

    Full text link
    This article presents a new three-degree-of-freedom (3-DOF) parallel mechanism (PM) with two translations and one rotation (2T1R), designed based on the topological design theory of the parallel mechanism using position and orientation characteristics (POC). The PM is primarily intended for use in package sorting and delivery. The mobile platform of the PM moves along a translation axis, picks up objects from a conveyor belt, and tilts them to either side of the axis. We first calculate the PM's topological characteristics, such as the degree of freedom (DOF) and the degree of coupling, and provide its topological analytical formula to represent the topological information of the PM. Next, we solve the direct and inverse kinematic models based on the kinematic modelling principle using the topological features. The models are purely analytic and are broken down into a series of quadratic equations, making them suitable for use in an industrial robot. We also study the singular configurations to identify the serial and parallel singularities. Using the decoupling properties, we size the mechanism to address the package sorting and depositing problem using an algebraic approach. To determine the smallest segment lengths, we use a cylindrical algebraic decomposition to solve a system with inequalities.Comment: IDETC-CIE 2023 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, ASME, Aug 2023, Boston, Franc

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    Screw theory based dynamic balance methods

    Get PDF

    Dynamic modelling of hexarot parallel mechanisms for design and development

    Full text link
    In this research, the kinematics, dynamics, and general closed-form dynamic formulation of the centrifugal high-G hexarot-based manipulators have been developed through the different mathematical modeling techniques. The vibrations of the mechanism have also been investigated

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Dynamic modelling of articulated figures suitable for the purpose of computer animation

    Get PDF
    The animation of articulated bodies presents interest in the areas of biomechanics, sports, medicine and the entertainment industry. Traditional motion control methods for these bodies, such as kinematics and rotoscoping are either expensive to use or very laborious. The motion of articulated bodies is complex mostly because of their number of articulations and the diversity of possible motions. This thesis investigates the possibility of using dynamic analysis in order to define the motion of articulated bodies. Dynamic analysis uses physical quantities such as forces, torques and accelerations, to calculate the motion of the body. The method used in this thesis is based upon the inverse Lagrangian dynamics formulation, which, given the accelerations, velocities and positions of each of the articulations of the body, finds the forces or torques that are necessary to generate such motion. Dynamic analysis offers the possibility of generating more realistic motion and also of automating the process of motion control. The Lagrangian formulation was used first in robotics and thus the necessary adaptations for using it in computer animation are presented. An analytical method for the calculation of ground reaction forces is also derived, as these are the most important external forces in the case of humans and the other animals that are of special interest in computer animation. The application of dynamic analysis in bipedal walking is investigated. Two models of increasing complexity are discussed. The issue of motion specification for articulated bodies is also examined. A software environment, Solaris, is described which includes the facility of dynamic and kinematic motion control for articulated bodies. Finally, the advantages and problematics of dynamic analysis with respect to kinematics and other methods are discussed

    Control-Oriented Reduced Order Modeling of Dipteran Flapping Flight

    Get PDF
    Flying insects achieve flight stabilization and control in a manner that requires only small, specialized neural structures to perform the essential components of sensing and feedback, achieving unparalleled levels of robust aerobatic flight on limited computational resources. An engineering mechanism to replicate these control strategies could provide a dramatic increase in the mobility of small scale aerial robotics, but a formal investigation has not yet yielded tools that both quantitatively and intuitively explain flapping wing flight as an "input-output" relationship. This work uses experimental and simulated measurements of insect flight to create reduced order flight dynamics models. The framework presented here creates models that are relevant for the study of control properties. The work begins with automated measurement of insect wing motions in free flight, which are then used to calculate flight forces via an empirically-derived aerodynamics model. When paired with rigid body dynamics and experimentally measured state feedback, both the bare airframe and closed loop systems may be analyzed using frequency domain system identification. Flight dynamics models describing maneuvering about hover and cruise conditions are presented for example fruit flies (Drosophila melanogaster) and blowflies (Calliphorids). The results show that biologically measured feedback paths are appropriate for flight stabilization and sexual dimorphism is only a minor factor in flight dynamics. A method of ranking kinematic control inputs to maximize maneuverability is also presented, showing that the volume of reachable configurations in state space can be dramatically increased due to appropriate choice of kinematic inputs

    Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans

    Get PDF
    The combination of physical sensors and computational models to provide additional information about system states, inputs and/or parameters, in what is known as virtual sensing, is becoming increasingly popular in many sectors, such as the automotive, aeronautics, aerospatial, railway, machinery, robotics and human biomechanics sectors. While, in many cases, control-oriented models, which are generally simple, are the best choice, multibody models, which can be much more detailed, may be better suited to some applications, such as during the design stage of a new product

    Efficient Sub-Optimal Inverse Kinematic Solution for Redundant Manipulators

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore