5,517 research outputs found

    On the suitability and development of layout templates for analog layout reuse and layout-aware synthesis

    Get PDF
    Accelerating the synthesis of increasingly complex analog integrated circuits is key to bridge the widening gap between what we can integrate and what we can design while meeting ever-tightening time-to-market constraints. It is a well-known fact in the semiconductor industry that such goal can only be attained by means of adequate CAD methodologies, techniques, and accompanying tools. This is particularly important in analog physical synthesis (a.k.a. layout generation), where large sensitivities of the circuit performances to the many subtle details of layout implementation (device matching, loading and coupling effects, reliability, and area features are of utmost importance to analog designers), render complete automation a truly challenging task. To approach the problem, two directions have been traditionally considered, knowledge-based and optimization-based, both with their own pros and cons. Besides, recently reported solutions oriented to speed up the overall design flow by means of reuse-based practices or by cutting off time-consuming, error-prone spins between electrical and layout synthesis (a technique known as layout-aware synthesis), rely on a outstandingly rapid yet efficient layout generation method. This paper analyses the suitability of procedural layout generation based on templates (a knowledge-based approach) by examining the requirements that both layout reuse and layout-aware solutions impose, and how layout templates face them. The ability to capture the know-how of experienced layout designers and the turnaround times for layout instancing are considered main comparative aspects in relation to other layout generation approaches. A discussion on the benefit-cost trade-off of using layout templates is also included. In addition to this analysis, the paper delves deeper into systematic techniques to develop fully reusable layout templates for analog circuits, either for a change of the circuit sizing (i.e., layout retargeting) or a change of the fabrication process (i.e., layout migration). Several examples implemented with the Cadence's Virtuoso tool suite are provided as demonstration of the paper's contributions.Ministerio de Educación y Ciencia TEC2004-0175

    A Structured Design Methodology for High Performance VLSI Arrays

    Get PDF
    abstract: The geometric growth in the integrated circuit technology due to transistor scaling also with system-on-chip design strategy, the complexity of the integrated circuit has increased manifold. Short time to market with high reliability and performance is one of the most competitive challenges. Both custom and ASIC design methodologies have evolved over the time to cope with this but the high manual labor in custom and statistic design in ASIC are still causes of concern. This work proposes a new circuit design strategy that focuses mostly on arrayed structures like TLB, RF, Cache, IPCAM etc. that reduces the manual effort to a great extent and also makes the design regular, repetitive still achieving high performance. The method proposes making the complete design custom schematic but using the standard cells. This requires adding some custom cells to the already exhaustive library to optimize the design for performance. Once schematic is finalized, the designer places these standard cells in a spreadsheet, placing closely the cells in the critical paths. A Perl script then generates Cadence Encounter compatible placement file. The design is then routed in Encounter. Since designer is the best judge of the circuit architecture, placement by the designer will allow achieve most optimal design. Several designs like IPCAM, issue logic, TLB, RF and Cache designs were carried out and the performance were compared against the fully custom and ASIC flow. The TLB, RF and Cache were the part of the HEMES microprocessor.Dissertation/ThesisPh.D. Electrical Engineering 201

    VLSI design methodology

    Get PDF

    Complex VLSI Feature Comparison for Commercial Microelectronics Verification

    Get PDF
    Shortcomings in IC verification make for glaring vulnerabilities in the form of hardware backdoors, or extraneous operation modes that allow unauthorized, undetected access. The DARPA TRUST program addressed the need for verification of untrusted circuits using industry-standard and custom software. The process developed under TRUST and implemented at the AFRL Mixed Signal Design Center has not been tested using real-world circuits outside of the designated TRUST test cases. This research demonstrates the potential of applying software designed for TRUST test articles on microchips from questionable sources. A specific process is developed for both transistor-level library cell verification and gate-level circuit verification. The relative effectiveness and scalability of the process are assessed

    45-nm Radiation Hardened Cache Design

    Get PDF
    abstract: Circuits on smaller technology nodes become more vulnerable to radiation-induced upset. Since this is a major problem for electronic circuits used in space applications, designers have a variety of solutions in hand. Radiation hardening by design (RHBD) is an approach, where electronic components are designed to work properly in certain radiation environments without the use of special fabrication processes. This work focuses on the cache design for a high performance microprocessor. The design tries to mitigate radiation effects like SEE, on a commercial foundry 45 nm SOI process. The design has been ported from a previously done cache design at the 90 nm process node. The cache design is a 16 KB, 4 way set associative, write-through design that uses a no-write allocate policy. The cache has been tested to write and read at above 2 GHz at VDD = 0.9 V. Interleaved layout, parity protection, dual redundancy, and checking circuits are used in the design to achieve radiation hardness. High speed is accomplished through the use of dynamic circuits and short wiring routes wherever possible. Gated clocks and optimized wire connections are used to reduce power. Structured methodology is used to build up the entire cache.Dissertation/ThesisM.S. Electrical Engineering 201
    corecore