6,267 research outputs found

    Medical image computing and computer-aided medical interventions applied to soft tissues. Work in progress in urology

    Full text link
    Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have focused on rigid and non deformable anatomical structures. Nowadays, special attention is paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-invasive digestive surgery was probably one of the first fields where soft tissues were handled through the development of simulators, tracking of anatomical structures and specific assistance robots. However, other clinical domains, for instance urology, are concerned. Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, or cryoablation), increasingly early detection of cancer, and use of interventional and diagnostic imaging modalities, recently opened new challenges to the urologist and scientists involved in CAMI. This resulted in the last five years in a very significant increase of research and developments of computer-aided urology systems. In this paper, we propose a description of the main problems related to computer-aided diagnostic and therapy of soft tissues and give a survey of the different types of assistance offered to the urologist: robotization, image fusion, surgical navigation. Both research projects and operational industrial systems are discussed

    Development of a Hybrid Stereotactic Guidance System For Percutaneous Liver Tumour Ablation

    Get PDF
    Stereotactic Image-Guided Surgical Navigation System (IGSNS) supports percutaneous procedures by using medical imaging and tracking information, to assist the surgeons in the preprocedural planning and intraprocedural steps. This thesis describes the development of a stereotactic IGSNS for percutaneous liver tumour ablation, the goal of which is to assist in positioning the tip of the ablation applicator accurately to ensure complete tumour coverage. The main system improvement is the employment of a mini stereotactic patient-attach aiming device that is used as a pointer to ensure needle tip position prior to needle insertion. The thesis chapters describe the development and validation of the components of the stereotactic IGSNS. An anthropomorphic phantom development for validation and training is also presented. We hypothesize that the combination of spatial tracking, real-time ultrasound, mechanical stabilization provided by the mini-stereotactic device and image-to-image registration will improve the targeting accuracy for the focal treatment and reduce the needle repositioning

    Augmented Reality Ultrasound Guidance in Anesthesiology

    Get PDF
    Real-time ultrasound has become a mainstay in many image-guided interventions and increasingly popular in several percutaneous procedures in anesthesiology. One of the main constraints of ultrasound-guided needle interventions is identifying and distinguishing the needle tip from needle shaft in the image. Augmented reality (AR) environments have been employed to address challenges surrounding surgical tool visualization, navigation, and positioning in many image-guided interventions. The motivation behind this work was to explore the feasibility and utility of such visualization techniques in anesthesiology to address some of the specific limitations of ultrasound-guided needle interventions. This thesis brings together the goals, guidelines, and best development practices of functional AR ultrasound image guidance (AR-UIG) systems, examines the general structure of such systems suitable for applications in anesthesiology, and provides a series of recommendations for their development. The main components of such systems, including ultrasound calibration and system interface design, as well as applications of AR-UIG systems for quantitative skill assessment, were also examined in this thesis. The effects of ultrasound image reconstruction techniques, as well as phantom material and geometry on ultrasound calibration, were investigated. Ultrasound calibration error was reduced by 10% with synthetic transmit aperture imaging compared with B-mode ultrasound. Phantom properties were shown to have a significant effect on calibration error, which is a variable based on ultrasound beamforming techniques. This finding has the potential to alter how calibration phantoms are designed cognizant of the ultrasound imaging technique. Performance of an AR-UIG guidance system tailored to central line insertions was evaluated in novice and expert user studies. While the system outperformed ultrasound-only guidance with novice users, it did not significantly affect the performance of experienced operators. Although the extensive experience of the users with ultrasound may have affected the results, certain aspects of the AR-UIG system contributed to the lackluster outcomes, which were analyzed via a thorough critique of the design decisions. The application of an AR-UIG system in quantitative skill assessment was investigated, and the first quantitative analysis of needle tip localization error in ultrasound in a simulated central line procedure, performed by experienced operators, is presented. Most participants did not closely follow the needle tip in ultrasound, resulting in 42% unsuccessful needle placements and a 33% complication rate. Compared to successful trials, unsuccessful procedures featured a significantly greater (p=0.04) needle-tip to image-plane distance. Professional experience with ultrasound does not necessarily lead to expert level performance. Along with deliberate practice, quantitative skill assessment may reinforce clinical best practices in ultrasound-guided needle insertions. Based on the development guidelines, an AR-UIG system was developed to address the challenges in ultrasound-guided epidural injections. For improved needle positioning, this system integrated A-mode ultrasound signal obtained from a transducer housed at the tip of the needle. Improved needle navigation was achieved via enhanced visualization of the needle in an AR environment, in which B-mode and A-mode ultrasound data were incorporated. The technical feasibility of the AR-UIG system was evaluated in a preliminary user study. The results suggested that the AR-UIG system has the potential to outperform ultrasound-only guidance

    An Open-Source 7-Axis, Robotic Platform to Enable Dexterous Procedures within CT Scanners

    Full text link
    This paper describes the design, manufacture, and performance of a highly dexterous, low-profile, 7 Degree-of-Freedom (DOF) robotic arm for CT-guided percutaneous needle biopsy. Direct CT guidance allows physicians to localize tumours quickly; however, needle insertion is still performed by hand. This system is mounted to a fully active gantry superior to the patient's head and teleoperated by a radiologist. Unlike other similar robots, this robot's fully serial-link approach uses a unique combination of belt and cable drives for high-transparency and minimal-backlash, allowing for an expansive working area and numerous approach angles to targets all while maintaining a small in-bore cross-section of less than 16cm216cm^2. Simulations verified the system's expansive collision free work-space and ability to hit targets across the entire chest, as required for lung cancer biopsy. Targeting error is on average <1mm<1mm on a teleoperated accuracy task, illustrating the system's sufficient accuracy to perform biopsy procedures. The system is designed for lung biopsies due to the large working volume that is required for reaching peripheral lung lesions, though, with its large working volume and small in-bore cross-sectional area, the robotic system is effectively a general-purpose CT-compatible manipulation device for percutaneous procedures. Finally, with the considerable development time undertaken in designing a precise and flexible-use system and with the desire to reduce the burden of other researchers in developing algorithms for image-guided surgery, this system provides open-access, and to the best of our knowledge, is the first open-hardware image-guided biopsy robot of its kind.Comment: 8 pages, 9 figures, final submission to IROS 201

    Towards Tactile Sensing of the Epidural Needle into the Spinal Column

    Get PDF
    The accurate placement of a needle into the spinal column is critical for spinal anesthesia, spinal taps, and other spinal procedures. Currently, the insertion of the needle is guided by visual and palpation feedback, which can be limited in accuracy and reliability. This study presents a novel approach to provide tactile feedback during needle insertion into the spinal column. This study aims to investigate the effectiveness of providing feedback during the insertion of a needle into the epidural column. The study uses force-sensing resistor that is placed at the base of the needle. As the needle is inserted into the spinal column, the sensors measure the resistance and force encountered by the needle. These measurements are transmitted to a computer system that processes the data and generates real-time graphical feedback. The system was tested on a phantom model that simulates the spinal column. The results showed that the tactile feedback provided by the system improved the accuracy of needle placement and fewer tries at needle insertion were needed. The proposed tactile feedback system has the potential to improve the accuracy and safety of needle placement during spinal procedures

    Comparison of a novel real-time SonixGPS needle-tracking ultrasound technique with traditional ultrasound for vascular access in a phantom gel model

    Get PDF
    ObjectiveUltrasound-guided percutaneous vascular access for endovascular procedures is well established in surgical practice. Despite this, rates of complications from venous and arterial access procedures remain a significant cause of morbidity. We hypothesized that the use of a new technique of vascular access using an ultrasound with a novel needle-guidance positioning system (GPS) would lead to improved success rates of vascular puncture for both in-plane and out-of-plane techniques compared with traditional ultrasound.MethodsA prospective, randomized crossover study of medical students from all years of medical school was conducted using a phantom gel model. Each medical student performed three ultrasound-guided punctures with each of the four modalities (in-plane no GPS, in-plane with GPS, out-of-plane no GPS, out-of-plane with GPS) for a total of 12 attempts. The success or failure was judged by the ability to aspirate a simulated blood solution from the model. The time to successful puncture was also recorded. A poststudy validated NASA Task Load Index workload questionnaire was conducted to assess the student's perceptions of the two different techniques.ResultsA total of 30 students completed the study. There was no significant difference seen in the mean times of vascular access for each of the modalities. Higher success rates for vascular access using the GPS for both the in-plane (94% vs 91%) and the out-of-plane (86% vs 70%) views were observed; however, this was not statistically significant. The students perceived the mental demand (median 12.0 vs 14.00; P = .035) and effort to be lower (mean 11.25 vs 14.00; P = .044) as well as the performance to be higher (mean 15.50 vs 14.00; P = .041) for the GPS vs the traditional ultrasound-guided technique. Students also perceived their ability to access vessels increased with the aid of the GPS (7.00 vs 6.50; P = .007). The majority of students expressed a preference for GPS (26/30, 87%) as opposed to the traditional counterpart.ConclusionsUse of the novel SonixGPS needle-tracking ultrasound system (UltraSonix, Richmond, BC, Canada) was not associated with a higher success rate of vascular puncture compared with the traditional ultrasound-guided technique. Assessment of mental task load significantly favored the use of the ultrasound GPS over the traditional ultrasound technique

    Preliminary Implementation of the Next Generation Cannulation Simulator

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Extracorporeal Membrane Oxygenation (ECMO) is a highly complex/critical lifesaving procedure known to support patients with cardiac and respiratory issues. Patients on ECMO are monitored 24/7 by a team of highly trained ECMO team comprising nurses, physicians, respiratory therapists, and perfusionists promptly intervening to any potential emergency situation. Simulation-Based Training (SBT) allows clinicians to experience and practice realistic hands-on procedures and scenarios without any risk. In ECMO, cannulation is a critical procedure performed to externally reroute the blood flow so it can be re-oxygenated by the ECMO machine before being recirculated through the patient's body. In a close collaboration with Hamad Medical Corporation (HMC), this project aims to develop a cost effective, realistic, and user-friendly ECMO simulator focusing on the venous and arterial cannulation procedure, The main features of this simulator include cannulation emergencies caused by low pressure flow, excessive force, recirculation, or mispositioned wire/cannula. Therefore, the ECMO cannulation simulator will not only greatly contribute to the initial and ongoing local training of HMC ECMO clinicians but also contribute to improving patient care by lowering the risks associated with the cannulation process

    Ultrasound Guidance in Perioperative Care

    Get PDF

    Ultrasound Guidance in Perioperative Care

    Get PDF
    • …
    corecore