85,517 research outputs found

    Error and Attack Tolerance of Layered Complex Networks

    Get PDF
    Many complex systems may be described not by one, but by a number of complex networks mapped one on the other in a multilayer structure. The interactions and dependencies between these layers cause that what is true for a distinct single layer does not necessarily reflect well the state of the entire system. In this paper we study the robustness of three real-life examples of two-layer complex systems that come from the fields of communication (the Internet), transportation (the European railway system) and biology (the human brain). In order to cover the whole range of features specific to these systems, we focus on two extreme policies of system's response to failures, no rerouting and full rerouting. Our main finding is that multilayer systems are much more vulnerable to errors and intentional attacks than they seem to be from a single layer perspective.Comment: 5 pages, 3 figure

    The positive soundscape project : a synthesis of results from many disciplines

    Get PDF
    This paper takes an overall view of ongoing findings from the Positive Soundscape Project, a large inter-disciplinary soundscapes study which is nearing completion. Qualitative fieldwork (soundwalks and focus groups) and lab-based listening tests have revealed that two key dimensions of the emotional response are calmness and vibrancy. In the lab these factors explain nearly 80% of the variance in listener response. Physiological validation is being sought using fMRI measurements, and these have so far shown significant differences in the response of the brain to affective and neutral soundscapes. A conceptual framework which links the key soundscape components and which could be used for future design is outlined. Metrics are suggested for some perceptual scales and possibilities for soundscape synthesis for design and user engagement are discussed, as are the applications of the results to future research and environmental noise policy

    Nature-Inspired Interconnects for Self-Assembled Large-Scale Network-on-Chip Designs

    Get PDF
    Future nano-scale electronics built up from an Avogadro number of components needs efficient, highly scalable, and robust means of communication in order to be competitive with traditional silicon approaches. In recent years, the Networks-on-Chip (NoC) paradigm emerged as a promising solution to interconnect challenges in silicon-based electronics. Current NoC architectures are either highly regular or fully customized, both of which represent implausible assumptions for emerging bottom-up self-assembled molecular electronics that are generally assumed to have a high degree of irregularity and imperfection. Here, we pragmatically and experimentally investigate important design trade-offs and properties of an irregular, abstract, yet physically plausible 3D small-world interconnect fabric that is inspired by modern network-on-chip paradigms. We vary the framework's key parameters, such as the connectivity, the number of switch nodes, the distribution of long- versus short-range connections, and measure the network's relevant communication characteristics. We further explore the robustness against link failures and the ability and efficiency to solve a simple toy problem, the synchronization task. The results confirm that (1) computation in irregular assemblies is a promising and disruptive computing paradigm for self-assembled nano-scale electronics and (2) that 3D small-world interconnect fabrics with a power-law decaying distribution of shortcut lengths are physically plausible and have major advantages over local 2D and 3D regular topologies

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    A new perspective for the training assessment: Machine learning-based neurometric for augmented user's evaluation

    Get PDF
    Inappropriate training assessment might have either high social costs and economic impacts, especially in high risks categories, such as Pilots, Air Traffic Controllers, or Surgeons. One of the current limitations of the standard training assessment procedures is the lack of information about the amount of cognitive resources requested by the user for the correct execution of the proposed task. In fact, even if the task is accomplished achieving the maximum performance, by the standard training assessment methods, it would not be possible to gather and evaluate information about cognitive resources available for dealing with unexpected events or emergency conditions. Therefore, a metric based on the brain activity (neurometric) able to provide the Instructor such a kind of information should be very important. As a first step in this direction, the Electroencephalogram (EEG) and the performance of 10 participants were collected along a training period of 3 weeks, while learning the execution of a new task. Specific indexes have been estimated from the behavioral and EEG signal to objectively assess the users' training progress. Furthermore, we proposed a neurometric based on a machine learning algorithm to quantify the user's training level within each session by considering the level of task execution, and both the behavioral and cognitive stabilities between consecutive sessions. The results demonstrated that the proposed methodology and neurometric could quantify and track the users' progresses, and provide the Instructor information for a more objective evaluation and better tailoring of training programs. © 2017 Borghini, Aricò, Di Flumeri, Sciaraffa, Colosimo, Herrero, Bezerianos, Thakor and Babiloni
    corecore