424 research outputs found

    Correlated Blocking in mmWave Cellular Networks: Macrodiversity, Outage, and Interference

    Get PDF
    In this paper, we provide a comprehensive analysis of macrodiversity for millimeter wave (mmWave) cellular networks. The key issue with mmWave networks is that signals are prone to blocking by objects in the environment, which causes paths to go from line-of-sight (LOS) to non-LOS (NLOS). We identify macrodiversity as an important strategy for mitigating blocking, as with macrodiversity the user will attempt to connect with two or more base stations. Diversity is achieved because if the closest base station is blocked, then the next base station might still be unblocked. However, since it is possible for a single blockage to simultaneously block the paths to two base stations, the issue of correlated blocking must be taken into account by the analysis. Our analysis characterizes the macrodiverity gain in the presence of correlated random blocking and interference. To do so, we develop a framework to determine distributions for the LOS probability, Signal to Noise Ratio (SNR), and Signal to Interference and Noise Ratio (SINR) by taking into account correlated blocking. We validate our framework by comparing our analysis, which models blockages using a random point process, with an analysis that uses real-world data to account for blockage. We consider a cellular uplink with both diversity combining and selection combining schemes. We also study the impact of blockage size and blockage density along with the effect of co-channel interference arising from other cells. We show that the assumption of independent blocking can lead to an incorrect evaluation of macrodiversity gain, as the correlation tends to decrease macrodiversity gain

    Exploiting Randomly-located Blockages for Large-Scale Deployment of Intelligent Surfaces

    Get PDF
    One of the promising technologies for the next generation wireless networks is the reconfigurable intelligent surfaces (RISs). This technology provides planar surfaces the capability to manipulate the reflected waves of impinging signals, which leads to a more controllable wireless environment. One potential use case of such technology is providing indirect line-of-sight (LoS) links between mobile users and base stations (BSs) which do not have direct LoS channels. Objects that act as blockages for the communication links, such as buildings or trees, can be equipped with RISs to enhance the coverage probability of the cellular network through providing extra indirect LoS-links. In this paper, we use tools from stochastic geometry to study the effect of large-scale deployment of RISs on the performance of cellular networks. In particular, we model the blockages using the line Boolean model. For this setup, we study how equipping a subset of the blockages with RISs will enhance the performance of the cellular network. We first derive the ratio of the blind-spots to the total area. Next, we derive the probability that a typical mobile user associates with a BS using an RIS. Finally, we derive the probability distribution of the path-loss between the typical user and its associated BS. We draw multiple useful system-level insights from the proposed analysis. For instance, we show that deployment of RISs highly improves the coverage regions of the BSs. Furthermore, we show that to ensure that the ratio of blind-spots to the total area is below 10^5, the required density of RISs increases from just 6 RISs/km2 when the density of the blockages is 300 blockage/km^2 to 490 RISs/km^2 when the density of the blockages is 700 blockage/km^2.Comment: Accepted in IEEE Journal on Selected Areas in Communication

    Analysis of Millimeter-Wave Networks: Blockage, Antenna Directivity, Macrodiversity, and Interference

    Get PDF
    Due to its potential to support high data rates at low latency with reasonable interference isolation because of signal blockage at these frequencies, millimeter-wave (mmWave) communications has emerged as a promising solution for next-generation wireless networks. MmWave systems are characterized by the use of highly directional antennas and susceptibility to signal blockage by buildings and other obstructions, which significantly alter the propagation environment. The received power of each transmission depends on the direction the corresponding antennas point and whether the signal’s path is line-of-sight (LOS), non-LOS (i.e., partially blocked), or completely blocked. A key challenge in modeling blocking in mmWave networks is that, in actual networks, the blocking might be correlated. Such correlation arises, for example, when single transmitter tries to broadcast to pair of receivers that are close to each other, or more generally when they have a similar angle to the transmitter. In this situation, if the first receiver is blocked, it is likely that the second one is blocked, too. This dissertation explores four related but distinct issues associated with mmWave networks: 1) Analytical modeling of networks consisting of user devices and blockages with fixed or random, but independent, locations, 2) The careful characterization of correlated blocking and analysis of its impact on the performance of mmWave networks, 3) The proposed use of macrodiversity as an important strategy to mitigating correlated blocking in mmWave networks and the corresponding analysis, and 4) The proposed use of networks of unmanned aerial vehicles (UAVs) to provide connectivity in urban deployments. This work provides insight into the performance of variety of applications of mmWave communications, ranging from wireless personal area networks (WPAN), device-to-device networks, traditional terrestrial, cellular networks, and the UAV-based networks where the UAVs act as the cellular base stations. A common thread throughout this dissertation is the development of new tools based on stochastic geometry and their application to modeling and analysis. The analysis presented in this dissertation is general enough to find application beyond mmWave networks, for instance the results may also be applicable to systems that use free-space optical (FSO) signaling technologies
    • …
    corecore