756 research outputs found

    Sensing Aided Reconfigurable Intelligent Surfaces for 3GPP 5G Transparent Operation

    Full text link
    Can reconfigurable intelligent surfaces (RISs) operate in a standalone mode that is completely transparent to the 3GPP 5G initial access process? Realizing that may greatly simplify the deployment and operation of these surfaces and reduce the infrastructure control overhead. This paper investigates the feasibility of building standalone/transparent RIS systems and shows that one key challenge lies in determining the user equipment (UE)-side RIS beam reflection direction. To address this challenge, we propose to equip the RISs with multi-modal sensing capabilities (e.g., using wireless and visual sensors) that enable them to develop some perception of the surrounding environment and the mobile users. Based on that, we develop a machine learning framework that leverages the wireless and visual sensors at the RIS to select the optimal beams between the base station (BS) and users and enable 5G standalone/transparent RIS operation. Using a high-fidelity synthetic dataset with co-existing wireless and visual data, we extensively evaluate the performance of the proposed framework. Experimental results demonstrate that the proposed approach can accurately predict the BS and UE-side candidate beams, and that the standalone RIS beam selection solution is capable of realizing near-optimal achievable rates with significantly reduced beam training overhead.Comment: The RIS dataset and script files will be available soon. arXiv admin note: text overlap with arXiv:2211.0756

    Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    Get PDF
    In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted

    Localisation and tracking of people using distributed UWB sensors

    Get PDF
    In vielen Überwachungs- und Rettungsszenarien ist die Lokalisierung und Verfolgung von Personen in Innenräumen auf nichtkooperative Weise erforderlich. Für die Erkennung von Objekten durch Wände in kurzer bis mittlerer Entfernung, ist die Ultrabreitband (UWB) Radartechnologie aufgrund ihrer hohen zeitlichen Auflösung und Durchdringungsfähigkeit Erfolg versprechend. In dieser Arbeit wird ein Prozess vorgestellt, mit dem Personen in Innenräumen mittels UWB-Sensoren lokalisiert werden können. Er umfasst neben der Erfassung von Messdaten, Abstandschätzungen und dem Erkennen von Mehrfachzielen auch deren Ortung und Verfolgung. Aufgrund der schwachen Reflektion von Personen im Vergleich zum Rest der Umgebung, wird zur Personenerkennung zuerst eine Hintergrundsubtraktionsmethode verwendet. Danach wird eine konstante Falschalarmrate Methode zur Detektion und Abstandschätzung von Personen angewendet. Für Mehrfachziellokalisierung mit einem UWB-Sensor wird eine Assoziationsmethode entwickelt, um die Schätzungen des Zielabstandes den richtigen Zielen zuzuordnen. In Szenarien mit mehreren Zielen kann es vorkommen, dass ein näher zum Sensor positioniertes Ziel ein anderes abschattet. Ein Konzept für ein verteiltes UWB-Sensornetzwerk wird vorgestellt, in dem sich das Sichtfeld des Systems durch die Verwendung mehrerer Sensoren mit unterschiedlichen Blickfeldern erweitert lässt. Hierbei wurde ein Prototyp entwickelt, der durch Fusion von Sensordaten die Verfolgung von Mehrfachzielen in Echtzeit ermöglicht. Dabei spielen insbesondere auch Synchronisierungs- und Kooperationsaspekte eine entscheidende Rolle. Sensordaten können durch Zeitversatz und systematische Fehler gestört sein. Falschmessungen und Rauschen in den Messungen beeinflussen die Genauigkeit der Schätzergebnisse. Weitere Erkenntnisse über die Zielzustände können durch die Nutzung zeitlicher Informationen gewonnen werden. Ein Mehrfachzielverfolgungssystem wird auf der Grundlage des Wahrscheinlichkeitshypothesenfilters (Probability Hypothesis Density Filter) entwickelt, und die Unterschiede in der Systemleistung werden bezüglich der von den Sensoren ausgegebene Informationen, d.h. die Fusion von Ortungsinformationen und die Fusion von Abstandsinformationen, untersucht. Die Information, dass ein Ziel detektiert werden sollte, wenn es aufgrund von Abschattungen durch andere Ziele im Szenario nicht erkannt wurde, wird als dynamische Überdeckungswahrscheinlichkeit beschrieben. Die dynamische Überdeckungswahrscheinlichkeit wird in das Verfolgungssystem integriert, wodurch weniger Sensoren verwendet werden können, während gleichzeitig die Performanz des Schätzers in diesem Szenario verbessert wird. Bei der Methodenauswahl und -entwicklung wurde die Anforderung einer Echtzeitanwendung bei unbekannten Szenarien berücksichtigt. Jeder untersuchte Aspekt der Mehrpersonenlokalisierung wurde im Rahmen dieser Arbeit mit Hilfe von Simulationen und Messungen in einer realistischen Umgebung mit UWB Sensoren verifiziert.Indoor localisation and tracking of people in non-cooperative manner is important in many surveillance and rescue applications. Ultra wideband (UWB) radar technology is promising for through-wall detection of objects in short to medium distances due to its high temporal resolution and penetration capability. This thesis tackles the problem of localisation of people in indoor scenarios using UWB sensors. It follows the process from measurement acquisition, multiple target detection and range estimation to multiple target localisation and tracking. Due to the weak reflection of people compared to the rest of the environment, a background subtraction method is initially used for the detection of people. Subsequently, a constant false alarm rate method is applied for detection and range estimation of multiple persons. For multiple target localisation using a single UWB sensor, an association method is developed to assign target range estimates to the correct targets. In the presence of multiple targets it can happen that targets closer to the sensor induce shadowing over the environment hindering the detection of other targets. A concept for a distributed UWB sensor network is presented aiming at extending the field of view of the system by using several sensors with different fields of view. A real-time operational prototype has been developed taking into consideration sensor cooperation and synchronisation aspects, as well as fusion of the information provided by all sensors. Sensor data may be erroneous due to sensor bias and time offset. Incorrect measurements and measurement noise influence the accuracy of the estimation results. Additional insight of the targets states can be gained by exploiting temporal information. A multiple person tracking framework is developed based on the probability hypothesis density filter, and the differences in system performance are highlighted with respect to the information provided by the sensors i.e. location information fusion vs range information fusion. The information that a target should have been detected when it is not due to shadowing induced by other targets is described as dynamic occlusion probability. The dynamic occlusion probability is incorporated into the tracking framework, allowing fewer sensors to be used while improving the tracker performance in the scenario. The method selection and development has taken into consideration real-time application requirements for unknown scenarios at every step. Each investigated aspect of multiple person localization within the scope of this thesis has been verified using simulations and measurements in a realistic environment using M-sequence UWB sensors

    Observation of High-Energy Gamma-Rays with the Calorimetric Electron Telescope (CALET) On-board the International Space Station

    Get PDF
    The CALorimetric Electron Telescope (CALET) is a multi-instrument high-energy astrophysics observatory deployed to the International Space Station (ISS) in August 2015. The primary instrument is the calorimeter (CAL), which is intended for measurement of the cosmic ray electron flux in the energy range 10 GeV - 20 TeV. The CAL is also sensitive to gamma-rays in the energy range 1 GeV - 10 TeV and protons and nuclei up to PeV energies. Also present on the CALET payload are an Advanced Stellar Compass (ASC) for the fine determination of the pointing direction and the CALET Gamma-ray Burst Monitor (CGBM) for the observation of hard x-ray/soft gamma-ray emission from gamma-ray bursts (GRBs). This work focuses on the capabilities and current results of the CAL for observation of gamma-ray sources in the GeV-energy regime. The methodology for the isolation of a gamma-ray dataset is presented and the resulting efficiencies and instrument response functions (IRFs) are derived from Monte Carlo simulated events. These results are validated by comparison with the first two years of flight data from CALET and the consistency with established measurements from other instruments is shown. Finally, independent CALET observations are presented, with an emphasis on the potential for detection of high-energy electromagnetic emission from transient events, including short and long GRBs, gravitational wave events seen by the LIGO/Virgo observatories, and high-energy astrophysical neutrino observations

    Detecting, tracking and counting people getting on/off a metropolitan train using a standard video camera

    Get PDF
    The main source of delays in public transport systems (buses, trams, metros, railways) takes place in their stations. For example, a public transport vehicle can travel at 60 km per hour between stations, but its commercial speed (average en-route speed, including any intermediate delay) does not reach more than half of that value. Therefore, the problem that public transport operators must solve is how to reduce the delay in stations. From the perspective of transport engineering, there are several ways to approach this issue, from the design of infrastructure and vehicles to passenger traffic management. The tools normally available to traffic engineers are analytical models, microscopic traffic simulation, and, ultimately, real-scale laboratory experiments. In any case, the data that are required are number of passengers that get on and off from the vehicles, as well as the number of passengers waiting on platforms. Traditionally, such data has been collected manually by field counts or through videos that are then processed by hand. On the other hand, public transport networks, specially metropolitan railways, have an extensive monitoring infrastructure based on standard video cameras. Traditionally, these are observed manually or with very basic signal processing support, so there is significant scope for improving data capture and for automating the analysis of site usage, safety, and surveillance. This article shows a way of collecting and analyzing the data needed to feed both traffic models and analyze laboratory experimentation, exploiting recent intelligent sensing approaches. The paper presents a new public video dataset gathered using real-scale laboratory recordings. Part of this dataset has been annotated by hand, marking up head locations to provide a ground-truth on which to train and evaluate deep learning detection and tracking algorithms. Tracking outputs are then used to count people getting on and off, achieving a mean accuracy of 92% with less than 0.15% standard deviation on 322 mostly unseen dataset video sequences.Sergio A. Velastin is grateful for funding received from the Universidad Carlos III de Madrid, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement N 600371, el Ministerio de Economía, Industria y Competitividad (COFUND2013-51509) el Ministerio de Educación, Cultura y Deporte (CEI-15-17) and Banco Santander. Rodrigo Fernandez and Sergio A. Velastin gratefully acknowledge the Chilean National Science and Technology Council (Conicyt) for its funding under CONICYT-Fondecyt Regular Grant Nos. 1120219, 1080381 and 1140209 (“OBSERVE”)

    Millimeter-wave Mobile Sensing and Environment Mapping: Models, Algorithms and Validation

    Get PDF
    Integrating efficient connectivity, positioning and sensing functionalities into 5G New Radio (NR) and beyond mobile cellular systems is one timely research paradigm, especially at mm-wave and sub-THz bands. In this article, we address the radio-based sensing and environment mapping prospect with specific emphasis on the user equipment (UE) side. We first describe an efficient l1-regularized least-squares (LS) approach to obtain sparse range--angle charts at individual measurement or sensing locations. For the subsequent environment mapping, we then introduce a novel state model for mapping diffuse and specular scattering, which allows efficient tracking of individual scatterers over time using interacting multiple model (IMM) extended Kalman filter and smoother. We provide extensive numerical indoor mapping results at the 28~GHz band deploying OFDM-based 5G NR uplink waveform with 400~MHz channel bandwidth, covering both accurate ray-tracing based as well as actual RF measurement results. The results illustrate the superiority of the dynamic tracking-based solutions, compared to static reference methods, while overall demonstrate the excellent prospects of radio-based mobile environment sensing and mapping in future mm-wave networks

    Performance study of Kalman Filter track reconstruction algorithms in the FOOT experiment

    Get PDF
    Il progresso tecnologico ha portato all'evoluzione delle tecniche di radiazione oncologica, tra cui spicca il trattamento di adroterapia, che utilizza particelle cariche come protoni e ioni C. Il vantaggio rispetto alla radioterapia convenzionale, è la peculiare curva di rilascio di dose di particelle cariche nei tessuti, che presenta un massimo localizzato (picco di Bragg) alla fine del cammino. L'obiettivo di un trattamento adroterapico è la localizzazione della massima dose nel volume tumorale con minimo rilascio di dose nei tessuti sani circostanti. Oggigiorno, il Treatment Planning System (TPS) non considera appieno gli eventi di frammentazione, sia del bersaglio di materia organica nel caso di fasci di protoni, sia del proiettile in caso di ioni pesanti. Questo può portare alla sottostima della dose rilasciata negli organi a rischio, compromettendo l'efficacia del trattamento. Il nuovo esperimento FOOT (FragmentatiOn Of Target) si incarica di ricavare dati sperimentali sulla sezione d'urto dei frammenti prodotti nell'interazione tra particelle cariche (protoni e ioni pesanti come C, He e O) e tessuti biologici alle energie di 200-400 MeV/u. Questi dati saranno essenziali sia per il miglioramento dei trattamenti di adroterapia, sia per lo studio e l'ottimizzazione di meccanismi di radioprotezione per gli astronauti in orbita. L'apparato di FOOT consiste in un sistema di tracking in campo magnetico ad alta precisione ed utilizzando l'approccio di cinematica inversa, permette il calcolo della sezione d'urto differenziale di frammentazione nucleare con un'incertezza minore del 5%. La ricostruzione delle tracce si basa sul software SHOE (Software for Hadrontherapy Optimization Experiment), che utilizza il toolkit GENFIT ed il suo algoritmo Kalman di ricostruzione. Questa tesi si occupa dello studio di metodi per l'ottimizzazione della ricostruzione delle tracce, focalizzandosi in particolare sul filtro di Kalman e la sua performance nell'esperimento FOOT

    GNSS Integrity Monitoring assisted by Signal Processing techniques in Harsh Environments

    Get PDF
    The Global Navigation Satellite Systems (GNSS) applications are growing and more pervasive in the modern society. The presence of multi-constellation GNSS receivers able to use signals coming from different systems like the american Global Positioning System (GPS), the european Galileo, the Chinese Beidou and the russian GLONASS, permits to have more accuracy in position solution. All the receivers provide always more reliable solution but it is important to monitor the possible presence of problems in the position computation. These problems could be caused by the presence of impairments given by unintentional sources like multipath generated by the environment or intentional sources like spoofing attacks. In this thesis we focus on design algorithms at signal processing level used to assist Integrity operations in terms of Fault Detection and Exclusion (FDE). These are standalone algorithms all implemented in a software receiver without using external information. The first step was the creation of a detector for correlation distortion due to the multipath with his limitations. Once the detection is performed a quality index for the signal is computed and a decision about the exclusion of a specific Satellite Vehicle (SV) is taken. The exclusion could be not feasible so an alternative approach could be the inflation of the variance of the error models used in the position computation. The quality signal can be even used for spoofinng applications and a novel mitigation technique is developed and presented. In addition, the mitigation of the multipath can be reached at pseudoranges level by using new method to compute the position solution. The main contributions of this thesis are: the development of a multipath, or more in general, impairments detector at signal processing level; the creation of an index to measure the quality of a signal based on the detector’s output; the description of a novel signal processing method for detection and mitigation of spoofing effects, based on the use of linear regression algorithms; An alternative method to compute the Position Velocity and Time (PVT) solution by using different well known algorithms in order to mitigate the effects of the multipath on the position domain
    corecore