1,199 research outputs found

    Efficient hardware debugging using parameterized FPGA reconfiguration

    Get PDF
    Functional errors and bugs inadvertently introduced at the RTL stage of the design process are responsible for the largest fraction of silicon IC re-spins. Thus, comprehensive func- tional verification is the key to reduce development costs and to deliver a product in time. The increasing demands for verification led to an increase in FPGA-based tools that perform emulation. These tools can run at much higher operating frequencies and achieve higher coverage than simulation. However, an important pitfall of the FPGA tools is that they suffer from limited internal signal observability, as only a small and preselected set of signals is guided towards (embedded) trace buffers and observed. This paper proposes a dynamically reconfigurable network of multiplexers that significantly enhance the visibility of internal signals. It allows the designer to dynamically change the small set of internal signals to be observed, virtually enlarging the set of observed signals significantly. These multiplexers occupy minimal space, as they are implemented by the FPGA’s routing infrastructure

    Automated Debugging Methodology for FPGA-based Systems

    Get PDF
    Electronic devices make up a vital part of our lives. These are seen from mobiles, laptops, computers, home automation, etc. to name a few. The modern designs constitute billions of transistors. However, with this evolution, ensuring that the devices fulfill the designer’s expectation under variable conditions has also become a great challenge. This requires a lot of design time and effort. Whenever an error is encountered, the process is re-started. Hence, it is desired to minimize the number of spins required to achieve an error-free product, as each spin results in loss of time and effort. Software-based simulation systems present the main technique to ensure the verification of the design before fabrication. However, few design errors (bugs) are likely to escape the simulation process. Such bugs subsequently appear during the post-silicon phase. Finding such bugs is time-consuming due to inherent invisibility of the hardware. Instead of software simulation of the design in the pre-silicon phase, post-silicon techniques permit the designers to verify the functionality through the physical implementations of the design. The main benefit of the methodology is that the implemented design in the post-silicon phase runs many order-of-magnitude faster than its counterpart in pre-silicon. This allows the designers to validate their design more exhaustively. This thesis presents five main contributions to enable a fast and automated debugging solution for reconfigurable hardware. During the research work, we used an obstacle avoidance system for robotic vehicles as a use case to illustrate how to apply the proposed debugging solution in practical environments. The first contribution presents a debugging system capable of providing a lossless trace of debugging data which permits a cycle-accurate replay. This methodology ensures capturing permanent as well as intermittent errors in the implemented design. The contribution also describes a solution to enhance hardware observability. It is proposed to utilize processor-configurable concentration networks, employ debug data compression to transmit the data more efficiently, and partially reconfiguring the debugging system at run-time to save the time required for design re-compilation as well as preserve the timing closure. The second contribution presents a solution for communication-centric designs. Furthermore, solutions for designs with multi-clock domains are also discussed. The third contribution presents a priority-based signal selection methodology to identify the signals which can be more helpful during the debugging process. A connectivity generation tool is also presented which can map the identified signals to the debugging system. The fourth contribution presents an automated error detection solution which can help in capturing the permanent as well as intermittent errors without continuous monitoring of debugging data. The proposed solution works for designs even in the absence of golden reference. The fifth contribution proposes to use artificial intelligence for post-silicon debugging. We presented a novel idea of using a recurrent neural network for debugging when a golden reference is present for training the network. Furthermore, the idea was also extended to designs where golden reference is not present

    Debugging Maude programs via runtime assertion checking and trace slicing

    Full text link
    [EN] This is the author’s version of a work that was accepted for publication in . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Logical and Algebraic Methods in Programming, [VOL 85, ISSUE 5, (2016)] DOI 10.1016/j.jlamp.2016.03.001.In this paper we propose a dynamic analysis methodology for improving the diagnosis of erroneous Maude programs. The key idea is to combine runtime checking and dynamic trace slicing for automatically catching errors at runtime while reducing the size and complexity of the erroneous traces to be analyzed (i.e., those leading to states failing to satisfy some of the assertions). First, we formalize a technique that is aimed at automatically detecting deviations of the program behavior (symptoms) with respect to two types of user-defined assertions: functional assertions and system assertions. The proposed dynamic checking is provably sound in the sense that all errors flagged are definitely violations of the specifications. Then, upon eventual assertion violations we generate accurate trace slices that help identify the cause of the error. Our methodology is based on (i) a logical notation for specifying assertions that are imposed on execution runs; (ii) a runtime checking technique that dynamically tests the assertions; and (iii) a mechanism based on (equational) least general generalization that automatically derives accurate criteria for slicing from falsified assertions. Finally, we report on an implementation of the proposed technique in the assertion-based, dynamic analyzer ABETS and show how the forward and backward tracking of asserted program properties leads to a thorough trace analysis algorithm that can be used for program diagnosis and debugging. © 2016 Elsevier Inc. All rights reserved.This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN2015-69175-C4-1-R and TIN2013-45732-C4-1-P, and by Generalitat Valenciana Ref. PROMETEOII/2015/013. F. Frechina was supported by FPU-ME grant AP2010-5681, and J. Sapiña was supported by FPI-UPV grant SP2013-0083 and mobility grant VIIT-3946.Alpuente Frasnedo, M.; Ballis, D.; Frechina, F.; Sapiña-Sanchis, J. (2016). Debugging Maude programs via runtime assertion checking and trace slicing. Journal of Logical and Algebraic Methods in Programming. 85(5):707-736. https://doi.org/10.1016/j.jlamp.2016.03.001S70773685

    A methodology for producing reliable software, volume 1

    Get PDF
    An investigation into the areas having an impact on producing reliable software including automated verification tools, software modeling, testing techniques, structured programming, and management techniques is presented. This final report contains the results of this investigation, analysis of each technique, and the definition of a methodology for producing reliable software

    Software Tracing Comparison Using Data Mining Techniques

    Get PDF
    La performance est devenue une question cruciale sur le développement, le test et la maintenance des logiciels. Pour répondre à cette préoccupation, les développeurs et les testeurs utilisent plusieurs outils pour améliorer les performances ou suivre les bogues liés à la performance. L’utilisation de méthodologies comparatives telles que Flame Graphs fournit un moyen formel de vérifier les causes des régressions et des problèmes de performance. L’outil de comparaison fournit des informations pour l’analyse qui peuvent être utilisées pour les améliorer par un mécanisme de profilage profond, comparant habituellement une donnée normale avec un profil anormal. D’autre part, le mécanisme de traçage est un mécanisme de tendance visant à enregistrer des événements dans le système et à réduire les frais généraux de son utilisation. Le registre de cette information peut être utilisé pour fournir aux développeurs des données pour l’analyse de performance. Cependant, la quantité de données fournies et les connaissances requises à comprendre peuvent constituer un défi pour les méthodes et les outils d’analyse actuels. La combinaison des deux méthodologies, un mécanisme comparatif de profilage et un système de traçabilité peu élevé peut permettre d’évaluer les causes des problèmes répondant également à des exigences de performance strictes en même temps. La prochaine étape consiste à utiliser ces données pour développer des méthodes d’analyse des causes profondes et d’identification des goulets d’étranglement. L’objectif de ce recherche est d’automatiser le processus d’analyse des traces et d’identifier automatiquement les différences entre les groupes d’exécutions. La solution présentée souligne les différences dans les groupes présentant une cause possible de cette différence, l’utilisateur peut alors bénéficier de cette revendication pour améliorer les exécutions. Nous présentons une série de techniques automatisées qui peuvent être utilisées pour trouver les causes profondes des variations de performance et nécessitant des interférences mineures ou non humaines. L’approche principale est capable d’indiquer la performance en utilisant une méthodologie de regroupement comparative sur les exécutions et a été appliquée sur des cas d’utilisation réelle. La solution proposée a été mise en oeuvre sur un cadre d’analyse pour aider les développeurs à résoudre des problèmes similaires avec un outil différentiel de flamme. À notre connaissance, il s’agit de la première tentative de corréler les mécanismes de regroupement automatique avec l’analyse des causes racines à l’aide des données de suivi. Dans ce projet, la plupart des données utilisées pour les évaluations et les expériences ont été effectuées dans le système d’exploitation Linux et ont été menées à l’aide de Linux Trace Toolkit Next Generation (LTTng) qui est un outil très flexible avec de faibles coûts généraux.----------ABSTRACT: Performance has become a crucial matter in software development, testing and maintenance. To address this concern, developers and testers use several tools to improve the performance or track performance related bugs. The use of comparative methodologies such as Flame Graphs provides a formal way to verify causes of regressions and performance issues. The comparison tool provides information for analysis that can be used to improve the study by a deep profiling mechanism, usually comparing normal with abnormal profiling data. On the other hand, Tracing is a popular mechanism, targeting to record events in the system and to reduce the overhead associated with its utilization. The record of this information can be used to supply developers with data for performance analysis. However, the amount of data provided, and the required knowledge to understand it, may present a challenge for the current analysis methods and tools. Combining both methodologies, a comparative mechanism for profiling and a low overhead trace system, can enable the easier evaluation of issues and underlying causes, also meeting stringent performance requirements at the same time. The next step is to use this data to develop methods for root cause analysis and bottleneck identification. The objective of this research project is to automate the process of trace analysis and automatic identification of differences among groups of executions. The presented solution highlights differences in the groups, presenting a possible cause for any difference. The user can then benefit from this claim to improve the executions. We present a series of automated techniques that can be used to find the root causes of performance variations, while requiring small or no human intervention. The main approach is capable to identify the performance difference cause using a comparative grouping methodology on the executions, and was applied to real use cases. The proposed solution was implemented on an analysis framework to help developers with similar problems, together with a differential flame graph tool. To our knowledge, this is the first attempt to correlate automatic grouping mechanisms with root cause analysis using tracing data. In this project, most of the data used for evaluations and experiments were done with the Linux Operating System and were conducted using the Linux Trace Toolkit Next Generation (LTTng), which is a very flexible tool with low overhead

    Harnessing Simulation Acceleration to Solve the Digital Design Verification Challenge.

    Full text link
    Today, design verification is by far the most resource and time-consuming activity of any new digital integrated circuit development. Within this area, the vast majority of the verification effort in industry relies on simulation platforms, which are implemented either in hardware or software. A "simulator" includes a model of each component of a design and has the capability of simulating its behavior under any input scenario provided by an engineer. Thus, simulators are deployed to evaluate the behavior of a design under as many input scenarios as possible and to identify and debug all incorrect functionality. Two features are critical in simulators for the validation effort to be effective: performance and checking/debugging capabilities. A wide range of simulator platforms are available today: on one end of the spectrum there are software-based simulators, providing a very rich software infrastructure for checking and debugging the design's functionality, but executing only at 1-10 simulation cycles per second (while actual chips operate at GHz speeds). At the other end of the spectrum, there are hardware-based platforms, such as accelerators, emulators and even prototype silicon chips, providing higher performances by 4 to 9 orders of magnitude, at the cost of very limited or non-existent checking/debugging capabilities. As a result, today, simulation-based validation is crippled: one can either have satisfactory performance on hardware-accelerated platforms or critical infrastructures for checking/debugging on software simulators, but not both. This dissertation brings together these two ends of the spectrum by presenting solutions that offer high-performance simulation with effective checking and debugging capabilities. Specifically, it addresses the performance challenge of software simulators by leveraging inexpensive off-the-shelf graphics processors as massively parallel execution substrates, and then exposing the parallelism inherent in the design model to that architecture. For hardware-based platforms, the dissertation provides solutions that offer enhanced checking and debugging capabilities by abstracting the relevant data to be logged during simulation so to minimize the cost of collection, transfer and processing. Altogether, the contribution of this dissertation has the potential to solve the challenge of digital design verification by enabling effective high-performance simulation-based validation.PHDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99781/1/dchatt_1.pd
    • …
    corecore