9,174 research outputs found

    Haptic Stylus and Empirical Studies on Braille, Button, and Texture Display

    Get PDF
    This paper presents a haptic stylus interface with a built-in compact tactile display module and an impact module as well as empirical studies on Braille, button, and texture display. We describe preliminary evaluations verifying the tactile display's performance indicating that it can satisfactorily represent Braille numbers for both the normal and the blind. In order to prove haptic feedback capability of the stylus, an experiment providing impact feedback mimicking the click of a button has been conducted. Since the developed device is small enough to be attached to a force feedback device, its applicability to combined force and tactile feedback display in a pen-held haptic device is also investigated. The handle of pen-held haptic interface was replaced by the pen-like interface to add tactile feedback capability to the device. Since the system provides combination of force, tactile and impact feedback, three haptic representation methods for texture display have been compared on surface with 3 texture groups which differ in direction, groove width, and shape. In addition, we evaluate its capacity to support touch screen operations by providing tactile sensations when a user rubs against an image displayed on a monitor

    Contactless Haptic Display Through Magnetic Field Control

    Full text link
    Haptic rendering enables people to touch, perceive, and manipulate virtual objects in a virtual environment. Using six cascaded identical hollow disk electromagnets and a small permanent magnet attached to an operator's finger, this paper proposes and develops an untethered haptic interface through magnetic field control. The concentric hole inside the six cascaded electromagnets provides the workspace, where the 3D position of the permanent magnet is tracked with a Microsoft Kinect sensor. The driving currents of six cascaded electromagnets are calculated in real-time for generating the desired magnetic force. Offline data from an FEA (finite element analysis) based simulation, determines the relationship between the magnetic force, the driving currents, and the position of the permanent magnet. A set of experiments including the virtual object recognition experiment, the virtual surface identification experiment, and the user perception evaluation experiment were conducted to demonstrate the proposed system, where Microsoft HoloLens holographic glasses are used for visual rendering. The proposed magnetic haptic display leads to an untethered and non-contact interface for natural haptic rendering applications, which overcomes the constraints of mechanical linkages in tool-based traditional haptic devices

    Tactons: structured tactile messages for non-visual information display

    Get PDF
    Tactile displays are now becoming available in a form that can be easily used in a user interface. This paper describes a new form of tactile output. Tactons, or tactile icons, are structured, abstract messages that can be used to communicate messages non-visually. A range of different parameters can be used for Tacton construction including: frequency, amplitude and duration of a tactile pulse, plus other parameters such as rhythm and location. Tactons have the potential to improve interaction in a range of different areas, particularly where the visual display is overloaded, limited in size or not available, such as interfaces for blind people or in mobile and wearable devices. This paper describes Tactons, the parameters used to construct them and some possible ways to design them. Examples of where Tactons might prove useful in user interfaces are given

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Impact of haptic 'touching' technology on cultural applications

    Get PDF
    No abstract available

    Web-based haptic applications for blind people to create virtual graphs

    Get PDF
    Haptic technology has great potentials in many applications. This paper introduces our work on delivery haptic information via the Web. A multimodal tool has been developed to allow blind people to create virtual graphs independently. Multimodal interactions in the process of graph creation and exploration are provided by using a low-cost haptic device, the Logitech WingMan Force Feedback Mouse, and Web audio. The Web-based tool also provides blind people with the convenience of receiving information at home. In this paper, we present the development of the tool and evaluation results. Discussions on the issues related to the design of similar Web-based haptic applications are also given

    Contributing to VRPN with a new server for haptic devices (ext. version)

    Get PDF
    This article is an extended version of the poster paper: Cuevas-Rodriguez, M., Gonzalez-Toledo D., Molina-Tanco, L., Reyes-Lecuona A., 2015, November. “Contributing to VRPN with a new server for haptic devices”. In Proceedings of the ACM symposium on Virtual reality software and technology. ACM.http://dx.doi.org/10.1145/2821592.2821639VRPN is a middleware to access Virtual Reality peripherals. VRPN standard distribution supports Geomagic® (formerly Phantom) haptic devices through the now superseded GHOST library. This paper presents VRPN OpenHaptics Server, a contribution to VRPN library that fully reimplements VRPN support of Geomagic Haptic Devices. The implementation is based on the OpenHaptics v3.0 HLAPI layer, which supports all Geomagic Haptic Devices. We present the architecture of the contributed server, a detailed description of the offered API and an analysis of its performance in a set of example scenarios.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A haptic-enabled multimodal interface for the planning of hip arthroplasty

    Get PDF
    Multimodal environments help fuse a diverse range of sensory modalities, which is particularly important when integrating the complex data involved in surgical preoperative planning. The authors apply a multimodal interface for preoperative planning of hip arthroplasty with a user interface that integrates immersive stereo displays and haptic modalities. This article overviews this multimodal application framework and discusses the benefits of incorporating the haptic modality in this area
    corecore