237 research outputs found

    Earth Observation Open Science and Innovation

    Get PDF
    geospatial analytics; social observatory; big earth data; open data; citizen science; open innovation; earth system science; crowdsourced geospatial data; citizen science; science in society; data scienc

    Integrated material practice in free-form timber structures

    Get PDF
    Integrated material practice in free-form timber structures is a practice-led research project at CITA (Centre for IT and Architecture) that develops a digitally-augmented material practice around glue-laminated timber. The project is part of the InnoChain ETN and has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642877. The advent of digital tools and computation has shifted the focus of many material practices from the shaping of material to the shaping of information. The ability to process large amounts of data quickly has made computation commonplace in the design and manufacture of buildings, especially in iterative digital design workflows. The simulation of material performance and the shift from models as representational tools to functional ones has opened up new methods of working between digital model and physical material. Wood has gained a new relevance in contemporary construction because it is sustainable, renewable, and stores carbon. In light of the climate crisis and concerns about overpopulation, and coupled with developments in adhesives and process technology, it is returning to the forefront of construction. However, as a grown and heterogeneous material, its properties and behaviours nevertheless present barriers to its utilization in architecturally demanding areas. Similarly, the integration of the properties, material behaviours, and production constraints of glue-laminated timber (glulam) assemblies into early-stage architectural design workflows remains a challenging specialist and inter-disciplinary affair. Drawing on a partnership with Dsearch – the digital research network at White Arkitekter in Sweden – and Blumer Lehmann AG – a leading Swiss timber contractor – this research examines the design and fabrication of glue-laminated timber structures and seeks a means to link industrial timber fabrication with early-stage architectural design through the application of computational modelling, design, and an interrogation of established timber production processes. A particular focus is placed on large-scale free-form glulam structures due to their high performance demands and the challenge of exploiting the bending properties of timber. By proposing a computationally-augmented material practice in which design intent is informed by material and fabrication constraints, the research aims to discover new potentials in timber architecture. The central figure in the research is the glulam blank - the glue-laminated near-net shape of large-scale timber components. The design space that the blank occupies - between sawn, graded lumber and the finished architectural component - holds the potential to yield new types of timber components and new structural morphologies. Engaging with this space therefore requires new interfaces for design modelling and production that take into account the affordances of timber and timber processing. The contribution of this research is a framework for a material practice that integrates processes of computational modelling, architectural design, and timber fabrication and acts as a broker between domains of architectural design and industrial timber production. The research identifies four different notions of feedback that allow this material practice to form

    Distributed control of reconfigurable mobile network agents for resource coordination

    Get PDF
    Includes abstract.Includes bibliographical references.Considering the tremendous growth of internet applications and network resource federation proposed towards future open access network (FOAN), the need to analyze the robustness of the classical signalling mechanisms across multiple network operators cannot be over-emphasized. It is envisaged, there will be additional challenges in meeting the bandwidth requirements and network management...The first objective of this project is to describe the networking environment based on the support for heterogeneity of network components..

    Development of an integrated product information management system

    Get PDF
    This thesis reports on a research project undertaken over a four year period investigating and developing a software framework and application for integrating and managing building product information for construction engineering. The research involved extensive literature research, observation of the industry practices and interviews with construction industry practitioners and systems implementers to determine how best to represent and present product information to support the construction process. Applicable product models for information representation were reviewed and evaluated to determine present suitability. The IFC product model was found to be the most applicable. Investigations of technologies supporting the product model led to the development of a software tool, the IFC Assembly Viewer, which aided further investigations into the suitability of the product model (in its current state) for the exchange and sharing of product information. A software framework, or reusable software design and application, called PROduct Information Management System (PROMIS), was developed based on a non-standard product model but with flexibility to work with the IFC product model when sufficiently mature. The software comprises three subsystems namely: ProductWeb, ModelManager.NET and Product/Project Service (or P2Service). The key features of this system were shared project databases, parametric product specification, integration of product information sources, and application interaction and integration through interface components. PROMIS was applied to and tested with a modular construction business for the management of product information and for integration of product and project information through the design and construction (production) process

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure

    Combining MAS and P2P Systems: The Agent Trees Multi-Agent System (ATMAS)

    Get PDF
    The seamless retrieval of information distributed across networks has been one of the key goals of many systems. Early solutions involved the use of single static agents which would retrieve the unfiltered data and then process it. However, this was deemed costly and inefficient in terms of the bandwidth since complete files need to be downloaded when only a single value is often all that is required. As a result, mobile agents were developed to filter the data in situ before returning it to the user. However, mobile agents have their own associated problems, namely security and control. The Agent Trees Multi-Agent System (AT-MAS) has been developed to provide the remote processing and filtering capabilities but without the need for mobile code. It is implemented as a Peer to Peer (P2P) network of static intelligent cooperating agents, each of which control one or more data sources. This dissertation describes the two key technologies have directly influenced the design of ATMAS, Peer-to-Peer (P2P) systems and Multi-Agent Systems (MAS). P2P systems are conceptually simple, but limited in power, whereas MAS are significantly more complex but correspondingly more powerful. The resulting system exhibits the power of traditional MAS systems while retaining the simplicity of P2P systems. The dissertation describes the system in detail and analyses its performance

    DETC2003/CIE-48270 A FRAMEWORK FOR INTERNET BASED PRODUCT INFORMATION SHARING AND VISUALIZATION

    Get PDF
    ABSTRACT Internet based product information sharing and visualization is the foundation for collaborative product design and manufacturing. This paper presents a Web based framework with a STEP based product data master model and VRML based visualization techniques for visualizing and sharing product information among designers, production engineers and managers, purchasing and marketing staff, suppliers, and customers. A prototype software environment is implemented to validate the proposed framework and related technologies
    • 

    corecore