1,097 research outputs found

    Subset Warping: Rubber Sheeting with Cuts

    Full text link
    Image warping, often referred to as "rubber sheeting" represents the deformation of a domain image space into a range image space. In this paper, a technique is described which extends the definition of a rubber-sheet transformation to allow a polygonal region to be warped into one or more subsets of itself, where the subsets may be multiply connected. To do this, it constructs a set of "slits" in the domain image, which correspond to discontinuities in the range image, using a technique based on generalized Voronoi diagrams. The concept of medial axis is extended to describe inner and outer medial contours of a polygon. Polygonal regions are decomposed into annular subregions, and path homotopies are introduced to describe the annular subregions. These constructions motivate the definition of a ladder, which guides the construction of grid point pairs necessary to effect the warp itself

    Farthest-Polygon Voronoi Diagrams

    Get PDF
    Given a family of k disjoint connected polygonal sites in general position and of total complexity n, we consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log^3 n) time algorithm to compute it. We also prove a number of structural properties of this diagram. In particular, a Voronoi region may consist of k-1 connected components, but if one component is bounded, then it is equal to the entire region

    Origamizer: A Practical Algorithm for Folding Any Polyhedron

    Get PDF

    Study of optimal shapes for lightweight material design

    Get PDF
    The present end of studies project tries to assimilate the connections between the geometrical and physical domain in order to design optimal microstructures with the desired properties in 2D. The link between both domains is established by means of the crystallographic point groups, which relate the topology of the minimum volume unit and its symmetries with the elastic tensor. Therefore, there are two pre-processing variables that play a determining role on the way to the optimal topology: the shape of the mesh and the symmetries of the material distribution inside it. For this reason, in the present study a shape generator and unit cell meshing algorithm is implemented and a topological optimizer code is used to distribute geometrically the material inside the unit cells in order to obtain the desired elastic tensor (resolution of the inverse problem) while minimizing the amount of material used. In order to obtain the desired material properties, the capacity of the topological optimizer to generate the necessary geometric symmetries in the microstructure that guarantee the physical symmetries required by the design target tensor is evaluated. Therefore, during the course of the study there will be a theoretical review of topological optimization, crystallography and geometric and tensor symmetries, the development of the structure and operation of the mesh generator code and a practical study of the optimizer’s capacity to obtain the tensors designed with the selected lattice topologies. At the same time, the essential organizational concepts and main differences between the programming used in the meshing algorithm, that is object-oriented programming, and modular or functional programming, are also reviewed

    Conforming restricted Delaunay mesh generation for piecewise smooth complexes

    Get PDF
    A Frontal-Delaunay refinement algorithm for mesh generation in piecewise smooth domains is described. Built using a restricted Delaunay framework, this new algorithm combines a number of novel features, including: (i) an unweighted, conforming restricted Delaunay representation for domains specified as a (non-manifold) collection of piecewise smooth surface patches and curve segments, (ii) a protection strategy for domains containing curve segments that subtend sharply acute angles, and (iii) a new class of off-centre refinement rules designed to achieve high-quality point-placement along embedded curve features. Experimental comparisons show that the new Frontal-Delaunay algorithm outperforms a classical (statically weighted) restricted Delaunay-refinement technique for a number of three-dimensional benchmark problems.Comment: To appear at the 25th International Meshing Roundtabl

    Evolution of polygonal crack patterns in mud when subjected to repeated wetting-drying cycles

    Full text link
    The present paper demonstrates how a natural crack mosaic resembling a random tessellation evolves with repeated 'wetting followed by drying' cycles. The natural system here is a crack network in a drying colloidal material, for example, a layer of mud. A spring network model is used to simulate consecutive wetting and drying cycles in mud layers until the crack mosaic matures. The simulated results compare favourably with reported experimental findings. The evolution of these crack mosaics has been mapped as a trajectory of a 4-vector tuple in a geometry-topology domain. A phenomenological relation between energy and crack geometry as functions of time cycles is proposed based on principles of crack mechanics. We follow the crack pattern evolution to find that the pattern veers towards a Voronoi mosaic in order to minimize the system energy. Some examples of static crack mosaics in nature have also been explored to verify if nature prefers Voronoi patterns. In this context, the authors define new geometric measures of Voronoi-ness of crack mosaics to quantify how close a tessellation is to a Voronoi tessellation, or even, to a Centroidal Voronoi tessellation

    Voronoi diagrams in the max-norm: algorithms, implementation, and applications

    Get PDF
    Voronoi diagrams and their numerous variants are well-established objects in computational geometry. They have proven to be extremely useful to tackle geometric problems in various domains such as VLSI CAD, Computer Graphics, Pattern Recognition, Information Retrieval, etc. In this dissertation, we study generalized Voronoi diagram of line segments as motivated by applications in VLSI Computer Aided Design. Our work has three directions: algorithms, implementation, and applications of the line-segment Voronoi diagrams. Our results are as follows: (1) Algorithms for the farthest Voronoi diagram of line segments in the Lp metric, 1 ≤ p ≤ ∞. Our main interest is the L2 (Euclidean) and the L∞ metric. We first introduce the farthest line-segment hull and its Gaussian map to characterize the regions of the farthest line-segment Voronoi diagram at infinity. We then adapt well-known techniques for the construction of a convex hull to compute the farthest line-segment hull, and therefore, the farthest segment Voronoi diagram. Our approach unifies techniques to compute farthest Voronoi diagrams for points and line segments. (2) The implementation of the L∞ Voronoi diagram of line segments in the Computational Geometry Algorithms Library (CGAL). Our software (approximately 17K lines of C++ code) is built on top of the existing CGAL package on the L2 (Euclidean) Voronoi diagram of line segments. It is accepted and integrated in the upcoming version of the library CGAL-4.7 and will be released in september 2015. We performed the implementation in the L∞ metric because we target applications in VLSI design, where shapes are predominantly rectilinear, and the L∞ segment Voronoi diagram is computationally simpler. (3) The application of our Voronoi software to tackle proximity-related problems in VLSI pattern analysis. In particular, we use the Voronoi diagram to identify critical locations in patterns of VLSI layout, which can be faulty during the printing process of a VLSI chip. We present experiments involving layout pieces that were provided by IBM Research, Zurich. Our Voronoi-based method was able to find all problematic locations in the provided layout pieces, very fast, and without any manual intervention
    • …
    corecore