2,153 research outputs found

    Topological Schemas of Memory Spaces

    Full text link
    Hippocampal cognitive map---a neuronal representation of the spatial environment---is broadly discussed in the computational neuroscience literature for decades. More recent studies point out that hippocampus plays a major role in producing yet another cognitive framework that incorporates not only spatial, but also nonspatial memories---the memory space. However, unlike cognitive maps, memory spaces have been barely studied from a theoretical perspective. Here we propose an approach for modeling hippocampal memory spaces as an epiphenomenon of neuronal spiking activity. First, we suggest that the memory space may be viewed as a finite topological space---a hypothesis that allows treating both spatial and nonspatial aspects of hippocampal function on equal footing. We then model the topological properties of the memory space to demonstrate that this concept naturally incorporates the notion of a cognitive map. Lastly, we suggest a formal description of the memory consolidation process and point out a connection between the proposed model of the memory spaces to the so-called Morris' schemas, which emerge as the most compact representation of the memory structure.Comment: 24 pages, 8 Figures, 1 Suppl. Figur

    Robust spatial memory maps encoded in networks with transient connections

    Full text link
    The spiking activity of principal cells in mammalian hippocampus encodes an internalized neuronal representation of the ambient space---a cognitive map. Once learned, such a map enables the animal to navigate a given environment for a long period. However, the neuronal substrate that produces this map remains transient: the synaptic connections in the hippocampus and in the downstream neuronal networks never cease to form and to deteriorate at a rapid rate. How can the brain maintain a robust, reliable representation of space using a network that constantly changes its architecture? Here, we demonstrate, using novel Algebraic Topology techniques, that cognitive map's stability is a generic, emergent phenomenon. The model allows evaluating the effect produced by specific physiological parameters, e.g., the distribution of connections' decay times, on the properties of the cognitive map as a whole. It also points out that spatial memory deterioration caused by weakening or excessive loss of the synaptic connections may be compensated by simulating the neuronal activity. Lastly, the model explicates functional importance of the complementary learning systems for processing spatial information at different levels of spatiotemporal granularity, by establishing three complementary timescales at which spatial information unfolds. Thus, the model provides a principal insight into how can the brain develop a reliable representation of the world, learn and retain memories despite complex plasticity of the underlying networks and allows studying how instabilities and memory deterioration mechanisms may affect learning process.Comment: 24 pages, 10 figures, 4 supplementary figure
    • …
    corecore