13 research outputs found

    Topological Foundations of Cognitive Science

    Get PDF
    A collection of papers presented at the First International Summer Institute in Cognitive Science, University at Buffalo, July 1994, including the following papers: ** Topological Foundations of Cognitive Science, Barry Smith ** The Bounds of Axiomatisation, Graham White ** Rethinking Boundaries, Wojciech Zelaniec ** Sheaf Mereology and Space Cognition, Jean Petitot ** A Mereotopological Definition of 'Point', Carola Eschenbach ** Discreteness, Finiteness, and the Structure of Topological Spaces, Christopher Habel ** Mass Reference and the Geometry of Solids, Almerindo E. Ojeda ** Defining a 'Doughnut' Made Difficult, N .M. Gotts ** A Theory of Spatial Regions with Indeterminate Boundaries, A.G. Cohn and N.M. Gotts ** Mereotopological Construction of Time from Events, Fabio Pianesi and Achille C. Varzi ** Computational Mereology: A Study of Part-of Relations for Multi-media Indexing, Wlodek Zadrozny and Michelle Ki

    A Dempster-Shafer theory inspired logic

    Get PDF
    Issues of formalising and interpreting epistemic uncertainty have always played a prominent role in Artificial Intelligence. The Dempster-Shafer (DS) theory of partial beliefs is one of the most-well known formalisms to address the partial knowledge. Similarly to the DS theory, which is a generalisation of the classical probability theory, fuzzy logic provides an alternative reasoning apparatus as compared to Boolean logic. Both theories are featured prominently within the Artificial Intelligence domain, but the unified framework accounting for all the aspects of imprecise knowledge is yet to be developed. Fuzzy logic apparatus is often used for reasoning based on vague information, and the beliefs are often processed with the aid of Boolean logic. The situation clearly calls for the development of a logic formalism targeted specifically for the needs of the theory of beliefs. Several frameworks exist based on interpreting epistemic uncertainty through an appropriately defined modal operator. There is an epistemic problem with this kind of frameworks: while addressing uncertain information, they also allow for non-constructive proofs, and in this sense the number of true statements within these frameworks is too large. In this work, it is argued that an inferential apparatus for the theory of beliefs should follow premises of Brouwer's intuitionism. A logic refuting tertium non daturìs constructed by defining a correspondence between the support functions representing beliefs in the DS theory and semantic models based on intuitionistic Kripke models with weighted nodes. Without addional constraints on the semantic models and without modal operators, the constructed logic is equivalent to the minimal intuitionistic logic. A number of possible constraints is considered resulting in additional axioms and making the proposed logic intermediate. Further analysis of the properties of the created framework shows that the approach preserves the Dempster-Shafer belief assignments and thus expresses modality through the belief assignments of the formulae within the developed logic.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Parameterized monads in linguistics

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.This dissertation follows the formal semantics approach to linguistics. It applies recent developments in computing theories to study theoretical linguistics in the area of the interaction between semantics and pragmatics and analyzes several natural language phenomena by parsing them in these theories. Specifically, this dissertation uses parameterized monads, a particular theoretical framework in category theory, as a dynamic semantic framework to reinterpret the compositional Discourse Representation Theory(cDRT), and to provide an analysis of donkey anaphora. Parameterized monads are also used in this dissertation to interpret information states as lists of presuppositions, and as dot types. Alternative interpretations for demonstratives and imperatives are produced, and the conventional implicature phenomenon in linguistics substantiated, using the framework. Interpreting donkey anaphora shows that parameterized monads is able to handle the sentential dependency. Therefore, this framework shows an expressive power equal to that of related frameworks such as the typed logical grammar and the dynamic predicate logic. Interpreting imperatives via parameterized monads also provides a compositional dynamic semantic analysis which is one of the main approaches to analysing imperatives

    Acta Scientiarum Mathematicarum : Tomus 56. Fasc. 1-2.

    Get PDF
    corecore