165 research outputs found

    Evasiveness and the Distribution of Prime Numbers

    Get PDF
    We confirm the eventual evasiveness of several classes of monotone graph properties under widely accepted number theoretic hypotheses. In particular we show that Chowla's conjecture on Dirichlet primes implies that (a) for any graph HH, "forbidden subgraph HH" is eventually evasive and (b) all nontrivial monotone properties of graphs with n3/2ϵ\le n^{3/2-\epsilon} edges are eventually evasive. (nn is the number of vertices.) While Chowla's conjecture is not known to follow from the Extended Riemann Hypothesis (ERH, the Riemann Hypothesis for Dirichlet's LL functions), we show (b) with the bound O(n5/4ϵ)O(n^{5/4-\epsilon}) under ERH. We also prove unconditional results: (a') for any graph HH, the query complexity of "forbidden subgraph HH" is (n2)O(1)\binom{n}{2} - O(1); (b') for some constant c>0c>0, all nontrivial monotone properties of graphs with cnlogn+O(1)\le cn\log n+O(1) edges are eventually evasive. Even these weaker, unconditional results rely on deep results from number theory such as Vinogradov's theorem on the Goldbach conjecture. Our technical contribution consists in connecting the topological framework of Kahn, Saks, and Sturtevant (1984), as further developed by Chakrabarti, Khot, and Shi (2002), with a deeper analysis of the orbital structure of permutation groups and their connection to the distribution of prime numbers. Our unconditional results include stronger versions and generalizations of some result of Chakrabarti et al.Comment: 12 pages (conference version for STACS 2010

    Collapsibility of CAT(0) spaces

    Full text link
    Collapsibility is a combinatorial strengthening of contractibility. We relate this property to metric geometry by proving the collapsibility of any complex that is CAT(0) with a metric for which all vertex stars are convex. This strengthens and generalizes a result by Crowley. Further consequences of our work are: (1) All CAT(0) cube complexes are collapsible. (2) Any triangulated manifold admits a CAT(0) metric if and only if it admits collapsible triangulations. (3) All contractible d-manifolds (d4d \ne 4) admit collapsible CAT(0) triangulations. This discretizes a classical result by Ancel--Guilbault.Comment: 27 pages, 3 figures. The part on collapsibility of convex complexes has been removed and forms a new paper, called "Barycentric subdivisions of convexes complex are collapsible" (arXiv:1709.07930). The part on enumeration of manifolds has also been removed and forms now a third paper, called "A Cheeger-type exponential bound for the number of triangulated manifolds" (arXiv:1710.00130

    Collapsing along monotone poset maps

    Full text link
    We introduce the notion of nonevasive reduction, and show that for any monotone poset map ϕ:PP\phi:P\to P, the simplicial complex Δ(P)\Delta(P) {\tt NE}-reduces to Δ(Q)\Delta(Q), for any QFixϕQ\supseteq{\text{\rm Fix}}\phi. As a corollary, we prove that for any order-preserving map ϕ:PP\phi:P\to P satisfying ϕ(x)x\phi(x)\geq x, for any xPx\in P, the simplicial complex Δ(P)\Delta(P) collapses to Δ(ϕ(P))\Delta(\phi(P)). We also obtain a generalization of Crapo's closure theorem.Comment: To appear in the International Journal of Mathematics and Mathematical Science

    Vertex decompositions of two-dimensional complexes and graphs

    Get PDF
    We investigate families of two-dimensional simplicial complexes defined in terms of vertex decompositions. They include nonevasive complexes, strongly collapsible complexes of Barmak and Miniam and analogues of 2-trees of Harary and Palmer. We investigate the complexity of recognition problems for those families and some of their combinatorial properties. Certain results follow from analogous decomposition techniques for graphs. For example, we prove that it is NP-complete to decide if a graph can be reduced to a discrete graph by a sequence of removals of vertices of degree 3.Comment: Improved presentation and fixed some bug

    Order complexes of noncomplemented lattices are nonevasive

    Full text link
    We reprove and generalize in a combinatorial way the result of A. Bj\"orner [J.\ Comb.\ Th.\ A {\bf 30}, 1981, pp.~90--100, Theorem 3.3], that order complexes of noncomplemented lattices are contractible, namely by showing that these simplicial complexes are in fact nonevasive, in particular collapsible

    One-Point Suspensions and Wreath Products of Polytopes and Spheres

    Get PDF
    It is known that the suspension of a simplicial complex can be realized with only one additional point. Suitable iterations of this construction generate highly symmetric simplicial complexes with various interesting combinatorial and topological properties. In particular, infinitely many non-PL spheres as well as contractible simplicial complexes with a vertex-transitive group of automorphisms can be obtained in this way.Comment: 17 pages, 8 figure
    corecore