1,526 research outputs found

    On the Development of Adaptive and User-Centred Interactive Multimodal Interfaces

    Get PDF
    Multimodal systems have attained increased attention in recent years, which has made possible important improvements in the technologies for recognition, processing, and generation of multimodal information. However, there are still many issues related to multimodality which are not clear, for example, the principles that make it possible to resemble human-human multimodal communication. This chapter focuses on some of the most important challenges that researchers have recently envisioned for future multimodal interfaces. It also describes current efforts to develop intelligent, adaptive, proactive, portable and affective multimodal interfaces

    Multimodal Shared-Control Interaction for Mobile Robots in AAL Environments

    Get PDF
    This dissertation investigates the design, development and implementation of cognitively adequate, safe and robust, spatially-related, multimodal interaction between human operators and mobile robots in Ambient Assisted Living environments both from the theoretical and practical perspectives. By focusing on different aspects of the concept Interaction, the essential contribution of this dissertation is divided into three main research packages; namely, Formal Interaction, Spatial Interaction and Multimodal Interaction in AAL. As the principle package, in Formal Interaction, research effort is dedicated to developing a formal language based interaction modelling and management solution process and a unified dialogue modelling approach. This package aims to enable a robust, flexible, and context-sensitive, yet formally controllable and tractable interaction. This type of interaction can be used to support the interaction management of any complex interactive systems, including the ones covered in the other two research packages. In the second research package, Spatial Interaction, a general qualitative spatial knowledge based multi-level conceptual model is developed and proposed. The goal is to support a spatially-related interaction in human-robot collaborative navigation. With a model-based computational framework, the proposed conceptual model has been implemented and integrated into a practical interactive system which has been evaluated by empirical studies. It has been particularly tested with respect to a set of high-level and model-based conceptual strategies for resolving the frequent spatially-related communication problems in human-robot interaction. Last but not least, in Multimodal Interaction in AAL, attention is drawn to design, development and implementation of multimodal interaction for elderly persons. In this elderly-friendly scenario, ageing-related characteristics are carefully considered for an effective and efficient interaction. Moreover, a standard model based empirical framework for evaluating multimodal interaction is provided. This framework was especially applied to evaluate a minutely developed and systematically improved elderly-friendly multimodal interactive system through a series of empirical studies with groups of elderly persons

    AmbiLearn: Multimodal assisted learning

    Get PDF

    Speech and Speaker Recognition for Home Automation: Preliminary Results

    No full text
    International audienceIn voice controlled multi-room smart homes ASR and speaker identification systems face distance speech conditionswhich have a significant impact on performance. Regarding voice command recognition, this paper presents an approach whichselects dynamically the best channel and adapts models to the environmental conditions. The method has been tested on datarecorded with 11 elderly and visually impaired participants in a real smart home. The voice command recognition error ratewas 3.2% in off-line condition and of 13.2% in online condition. For speaker identification, the performances were below veryspeaker dependant. However, we show a high correlation between performance and training size. The main difficulty was the tooshort utterance duration in comparison to state of the art studies. Moreover, speaker identification performance depends on the sizeof the adapting corpus and then users must record enough data before using the system

    Survey on Evaluation Methods for Dialogue Systems

    Get PDF
    In this paper we survey the methods and concepts developed for the evaluation of dialogue systems. Evaluation is a crucial part during the development process. Often, dialogue systems are evaluated by means of human evaluations and questionnaires. However, this tends to be very cost and time intensive. Thus, much work has been put into finding methods, which allow to reduce the involvement of human labour. In this survey, we present the main concepts and methods. For this, we differentiate between the various classes of dialogue systems (task-oriented dialogue systems, conversational dialogue systems, and question-answering dialogue systems). We cover each class by introducing the main technologies developed for the dialogue systems and then by presenting the evaluation methods regarding this class

    Bringing together commercial and academic perspectives for the development of intelligent AmI interfaces

    Get PDF
    The users of Ambient Intelligence systems expect an intelligent behavior from their environment, receiving adapted and easily accessible services and functionality. This can only be possible if the communication between the user and the system is carried out through an interface that is simple (i.e. which does not have a steep learning curve), fluid (i.e. the communication takes place rapidly and effectively), and robust (i.e. the system understands the user correctly). Natural language interfaces such as dialog systems combine the previous three requisites, as they are based on a spoken conversation between the user and the system that resembles human communication. The current industrial development of commercial dialog systems deploys robust interfaces in strictly defined application domains. However, commercial systems have not yet adopted the new perspective proposed in the academic settings, which would allow straightforward adaptation of these interfaces to various application domains. This would be highly beneficial for their use in AmI settings as the same interface could be used in varying environments. In this paper, we propose a new approach to bridge the gap between the academic and industrial perspectives in order to develop dialog systems using an academic paradigm while employing the industrial standards, which makes it possible to obtain new generation interfaces without the need for changing the already existing commercial infrastructures. Our proposal has been evaluated with the successful development of a real dialog system that follows our proposed approach to manage dialog and generates code compliant with the industry-wide standard VoiceXML.Research funded by projects CICYT TIN2011-28620-C02-01, CICYT TEC2011-28626-C02-02, CAM CONTEXTS (S2009/TIC-1485), and DPS2008- 07029-C02-02.Publicad

    A statistical simulation technique to develop and evaluate conversational agents

    Get PDF
    In this paper, we present a technique for developing user simulators which are able to interact and evaluate conversational agents. Our technique is based on a statistical model that is automatically learned from a dialog corpus. This model is used by the user simulator to provide the next answer taking into account the complete history of the interaction. The main objective of our proposal is not only to evaluate the conversational agent, but also to improve this agent by employing the simulated dialogs to learn a better dialog model. We have applied this technique to design and evaluate a conversational agent which provides academic information in a multi-agent system. The results of the evaluation show that the proposed user simulation methodology can be used not only to evaluate conversational agents but also to explore new enhanced dialog strategies, thereby allowing the conversational agent to reduce the time needed to complete the dialogs and automatically detect new valid paths to achieve each of the required objectives defined for the task.This work was supported in part by Projects MINECO TEC2012-37832-C02-01, CICYT TEC 2011-28626-C02-02, CAM CONTEXTS (S2009/TIC-1485).Publicad

    Towards End-to-End spoken intent recognition in smart home

    Get PDF
    International audienceVoice based interaction in a smart home has become a feature of many industrial products. These systems react to voice commands, whether it is for answering a question, providing music or turning on the lights. To be efficient, these systems must be able to extract the intent of the user from the voice command. Intent recognition from voice is typically performed through automatic speech recognition (ASR) and intent classification from the transcriptions in a pipeline. However, the errors accumulated at the ASR stage might severely impact the intent classifier. In this paper, we propose an End-to-End (E2E) model to perform intent classification directly from the raw speech input. The E2E approach is thus optimized for this specific task and avoids error propagation. Furthermore, prosodic aspects of the speech signal can be exploited by the E2E model for intent classification (e.g., question vs imperative voice). Experiments on a corpus of voice commands acquired in a real smart home reveal that the state-of-the art pipeline baseline is still superior to the E2E approach. However, using artificial data generation techniques we show that significant improvement to the E2E model can be brought to reach competitive performances. This opens the way to further research on E2E Spoken Language Understanding

    SLU FOR VOICE COMMAND IN SMART HOME: COMPARISON OF PIPELINE AND END-TO-END APPROACHES

    Get PDF
    International audienceSpoken Language Understanding (SLU) is typically performedthrough automatic speech recognition (ASR) andnatural language understanding (NLU) in a pipeline. However,errors at the ASR stage have a negative impact on theNLU performance. Hence, there is a rising interest in End-to-End (E2E) SLU to jointly perform ASR and NLU. AlthoughE2E models have shown superior performance to modularapproaches in many NLP tasks, current SLU E2E modelshave still not definitely superseded pipeline approaches.In this paper, we present a comparison of the pipelineand E2E approaches for the task of voice command in smarthomes. Since there are no large non-English domain-specificdata sets available, although needed for an E2E model, wetackle the lack of such data by combining Natural LanguageGeneration (NLG) and text-to-speech (TTS) to generateFrench training data. The trained models were evaluatedon voice commands acquired in a real smart home with severalspeakers. Results show that the E2E approach can reachperformances similar to a state-of-the art pipeline SLU despitea higher WER than the pipeline approach. Furthermore,the E2E model can benefit from artificially generated data toexhibit lower Concept Error Rates than the pipeline baselinefor slot recognition

    Ambient Assisted Living: Scoping Review of Artificial Intelligence Models, Domains, Technology, and Concerns

    Get PDF
    Background: Ambient assisted living (AAL) is a common name for various artificial intelligence (AI)—infused applications and platforms that support their users in need in multiple activities, from health to daily living. These systems use different approaches to learn about their users and make automated decisions, known as AI models, for personalizing their services and increasing outcomes. Given the numerous systems developed and deployed for people with different needs, health conditions, and dispositions toward the technology, it is critical to obtain clear and comprehensive insights concerning AI models used, along with their domains, technology, and concerns, to identify promising directions for future work. Objective: This study aimed to provide a scoping review of the literature on AI models in AAL. In particular, we analyzed specific AI models used in AАL systems, the target domains of the models, the technology using the models, and the major concerns from the end-user perspective. Our goal was to consolidate research on this topic and inform end users, health care professionals and providers, researchers, and practitioners in developing, deploying, and evaluating future intelligent AAL systems. Methods: This study was conducted as a scoping review to identify, analyze, and extract the relevant literature. It used a natural language processing toolkit to retrieve the article corpus for an efficient and comprehensive automated literature search. Relevant articles were then extracted from the corpus and analyzed manually. This review included 5 digital libraries: IEEE, PubMed, Springer, Elsevier, and MDPI. Results: We included a total of 108 articles. The annual distribution of relevant articles showed a growing trend for all categories from January 2010 to July 2022. The AI models mainly used unsupervised and semisupervised approaches. The leading models are deep learning, natural language processing, instance-based learning, and clustering. Activity assistance and recognition were the most common target domains of the models. Ambient sensing, mobile technology, and robotic devices mainly implemented the models. Older adults were the primary beneficiaries, followed by patients and frail persons of various ages. Availability was a top beneficiary concern. Conclusions: This study presents the analytical evidence of AI models in AAL and their domains, technologies, beneficiaries, and concerns. Future research on intelligent AAL should involve health care professionals and caregivers as designers and users, comply with health-related regulations, improve transparency and privacy, integrate with health care technological infrastructure, explain their decisions to the users, and establish evaluation metrics and design guidelines. Trial Registration: PROSPERO (International Prospective Register of Systematic Reviews) CRD42022347590; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022347590This work was part of and supported by GoodBrother, COST Action 19121—Network on Privacy-Aware Audio- and Video-Based Applications for Active and Assisted Living
    corecore