4,601 research outputs found

    Assessment of Today’s Mobile Banking Applications from the View of Customer Requirements

    Get PDF
    Mobile banking is a subset of electronic banking which underlies not only the determinants of the banking business but also the special conditions of mobile commerce. This paper analyzes customer needs and expectations from the mobile applications’ view and from the banking view in order to derive a defined set of requirements. Based on these results, existing mobile banking applications are assessed. Their major shortcomings are explained, opportunities for their improvement are shown and the impact of upcoming new technology is discussed. The outcome of the paper is a defined set of customer requirements to mobile banking applications, the identification and assessment of four standard types of current mobile banking applications and an explanation of major failure reasons along with opportunities for their improvement.

    A smart sewer asset information model to enable an ‘Internet of Things’ for operational wastewater management

    Get PDF
    Real-time prediction of flooding is vital for the successful future operational management of the UK sewerage network. Recent advances in smart infrastructure and the emergence of the Internet of Things (IoT), presents an opportunity within the wastewater sector to harness and report in real-time sewer condition data for operation management. This study presents the design and development of a prototype Smart Sewer Asset Information Model (SSAIM) for an existing sewerage network. The SSAIM, developed using Industry Foundation Class version 4 (IFC4) an open neutral data format for BIM, incorporates distributed smart sensors to enable real-time monitoring and reporting of sewer asset performance. Results describe an approach for sensor data analysis to facilitate the real-time prediction of flooding

    Naming and sharing resources across administrative boundaries

    Get PDF
    I tackle the problem of naming and sharing resources across administrative boundaries. Conventional systems manifest the hierarchy of typical administrative structure in the structure of their own mechanism. While natural for communication that follows hierarchical patterns, such systems interfere with naming and sharing that cross administrative boundaries, and therefore cause headaches for both users and administrators. I propose to organize resource naming and security, not around administrative domains, but around the sharing patterns of users. The dissertation is organized into four main parts. First, I discuss the challenges and tradeoffs involved in naming resources and consider a variety of existing approaches to naming. Second, I consider the architectural requirements for user-centric sharing. I evaluate existing systems with respect to these requirements. Third, to support the sharing architecture, I develop a formal logic of sharing that captures the notion of restricted delegation. Restricted delegation ensures that users can use the same mechanisms to share resources consistently, regardless of the origin of the resource, or with whom the user wishes to share the resource next. A formal semantics gives unambiguous meaning to the logic. I apply the formalism to the Simple Public Key Infrastructure and discuss how the formalism either supports or discourages potential extensions to such a system. Finally, I use the formalism to drive a user-centric sharing implementation for distributed systems. I show how this implementation enables end-to-end authorization, a feature that makes heterogeneous distributed systems more secure and easier to audit. Conventionally, gateway services that bridge administrative domains, add abstraction, or translate protocols typically impede the flow of authorization information from client to server. In contrast, end-to-end authorization enables us to build gateway services that preserve authorization information, hence we reduce the size of the trusted computing base and enable more effective auditing. I demonstrate my implementation and show how it enables end-to-end authorization across various boundaries. I measure my implementation and argue that its performance tracks that of similar authorization mechanisms without end-to-end structure. I conclude that my user-centric philosophy of naming and sharing benefits both users and administrators

    Towards end-to-end security in internet of things based healthcare

    Get PDF
    Healthcare IoT systems are distinguished in that they are designed to serve human beings, which primarily raises the requirements of security, privacy, and reliability. Such systems have to provide real-time notifications and responses concerning the status of patients. Physicians, patients, and other caregivers demand a reliable system in which the results are accurate and timely, and the service is reliable and secure. To guarantee these requirements, the smart components in the system require a secure and efficient end-to-end communication method between the end-points (e.g., patients, caregivers, and medical sensors) of a healthcare IoT system. The main challenge faced by the existing security solutions is a lack of secure end-to-end communication. This thesis addresses this challenge by presenting a novel end-to-end security solution enabling end-points to securely and efficiently communicate with each other. The proposed solution meets the security requirements of a wide range of healthcare IoT systems while minimizing the overall hardware overhead of end-to-end communication. End-to-end communication is enabled by the holistic integration of the following contributions. The first contribution is the implementation of two architectures for remote monitoring of bio-signals. The first architecture is based on a low power IEEE 802.15.4 protocol known as ZigBee. It consists of a set of sensor nodes to read data from various medical sensors, process the data, and send them wirelessly over ZigBee to a server node. The second architecture implements on an IP-based wireless sensor network, using IEEE 802.11 Wireless Local Area Network (WLAN). The system consists of a IEEE 802.11 based sensor module to access bio-signals from patients and send them over to a remote server. In both architectures, the server node collects the health data from several client nodes and updates a remote database. The remote webserver accesses the database and updates the webpage in real-time, which can be accessed remotely. The second contribution is a novel secure mutual authentication scheme for Radio Frequency Identification (RFID) implant systems. The proposed scheme relies on the elliptic curve cryptography and the D-Quark lightweight hash design. The scheme consists of three main phases: (1) reader authentication and verification, (2) tag identification, and (3) tag verification. We show that among the existing public-key crypto-systems, elliptic curve is the optimal choice due to its small key size as well as its efficiency in computations. The D-Quark lightweight hash design has been tailored for resource-constrained devices. The third contribution is proposing a low-latency and secure cryptographic keys generation approach based on Electrocardiogram (ECG) features. This is performed by taking advantage of the uniqueness and randomness properties of ECG's main features comprising of PR, RR, PP, QT, and ST intervals. This approach achieves low latency due to its reliance on reference-free ECG's main features that can be acquired in a short time. The approach is called Several ECG Features (SEF)-based cryptographic key generation. The fourth contribution is devising a novel secure and efficient end-to-end security scheme for mobility enabled healthcare IoT. The proposed scheme consists of: (1) a secure and efficient end-user authentication and authorization architecture based on the certificate based Datagram Transport Layer Security (DTLS) handshake protocol, (2) a secure end-to-end communication method based on DTLS session resumption, and (3) support for robust mobility based on interconnected smart gateways in the fog layer. Finally, the fifth and the last contribution is the analysis of the performance of the state-of-the-art end-to-end security solutions in healthcare IoT systems including our end-to-end security solution. In this regard, we first identify and present the essential requirements of robust security solutions for healthcare IoT systems. We then analyze the performance of the state-of-the-art end-to-end security solutions (including our scheme) by developing a prototype healthcare IoT system

    Building an Effective Health Insurance Exchange Website

    Get PDF
    Offers lessons and resources from Massachusetts about teams and partnerships, vendors, stakeholder input, system requirements, and ongoing improvement to help states plan, build, and implement Web sites for health insurance exchanges

    The Open Grid Computing Environments collaboration: portlets and services for science gateways

    Full text link
    We review the efforts of the Open Grid Computing Environments collaboration. By adopting a general three-tiered architecture based on common standards for portlets and Grid Web services, we can deliver numerous capabilities to science gateways from our diverse constituent efforts. In this paper, we discuss our support for standards-based Grid portlets using the Velocity development environment. Our Grid portlets are based on abstraction layers provided by the Java CoG kit, which hide the differences of different Grid toolkits. Sophisticated services are decoupled from the portal container using Web service strategies. We describe advance information, semantic data, collaboration, and science application services developed by our consortium. Copyright © 2006 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56029/1/1078_ftp.pd
    • …
    corecore