48 research outputs found

    Neuroergonomic Assessment of Wheelchair Control Using Mobile fNIRS

    Get PDF
    For over two centuries, the wheelchair has been one of the most common assistive devices for individuals with locomotor impairments without many modifications. Wheelchair control is a complex motor task that increases both the physical and cognitive workload. New wheelchair interfaces, including Power Assisted devices, can further augment users by reducing the required physical effort, however little is known on the mental effort implications. In this study, we adopted a neuroergonomic approach utilizing mobile and wireless functional near infrared spectroscopy (fNIRS) based brain monitoring of physically active participants. 48 volunteers (30 novice and 18 experienced) self-propelled on a wheelchair with and without a PowerAssist interface in both simple and complex realistic environments. Results indicated that as expected, the complex more difficult environment led to lower task performance complemented by higher prefrontal cortex activity compared to the simple environment. The use of the PowerAssist feature had significantly lower brain activation compared to traditional manual control only for novices. Expertise led to a lower brain activation pattern within the middle frontal gyrus, complemented by performance metrics that involve lower cognitive workload. Results here confirm the potential of the Neuroergonomic approach and that direct neural activity measures can complement and enhance task performance metrics. We conclude that the cognitive workload benefits of PowerAssist are more directed to new users and difficult settings. The approach demonstrated here can be utilized in future studies to enable greater personalization and understanding of mobility interfaces within real-world dynamic environments

    Automated testing in robotic process automation projects

    Get PDF
    Robotic process automation (RPA) has received increasing attention in recent years. It enables task automation by software components, which interact with user interfaces in a similar way to that of humans. An RPA project life cycle is closely resembling a software project one. However, in certain contexts (e.g., business process outsourcing), a testing environment is not always available. Thus, deploying the robots in the production environment entails high risk. To mitigate it, an innovative approach to automatically generate a testing environment and a test suite for an RPA project is presented. The activities of the humans whose processes are to be robotized are monitored and a UI log is confirmed. On one side, the test environment is generated as a fake application, which mimics the real environment by leveraging the UI log information. The control flow of the application is governed by an invisible control layer that decides which image to show depending on the interface actions that it receives. On the other side, the test case checks whether the robot can reproduce the behaviour of the UI log. Promising results were obtained and a number of limitations were identified such that it may be applied in more realistic domains.Ministerio de EconomĂ­a y Competitividad TIN2016-76956-C3-2-R (POLOLAS)Servinform, S.A. P114-16/E0

    Optimizing Human Performance to Enhance Safety: A Case Study in an Automotive Plant

    Get PDF
    Human factors play a relevant role in the dynamic work environments of the manufacturing sector in terms of production efficiency, safety, and sustainable performance. This is particularly relevant in assembly lines where humans are widely employed alongside automated and robotic agents. In this situation, operators’ ability to adapt to different levels of task complexity and variability in each workstation has a strong impact on the safety, reliability, and efficiency of the overall production process. This paper presents an application of a theoretical and empirical method used to assess the matching of different workers to various workstations based on a quantified comparison between the workload associated with the tasks and the human capability of the workers that can rotate among them. The approach allowed for the development of an algorithm designed to operationalise indicators for workload and task complexity requirements, considering the skills and capabilities of individual operators. This led to the creation of human performance (HP) indices. The HP indices were utilized to ensure a good match between requirements and capabilities, aiming to minimise the probability of human error and injuries. The developed and customised model demonstrated encouraging results in the specific case studies where it was applied but also offers a generalizable approach that can extend to other contexts and situations where job rotations can benefit from effectively matching operators to suitable task requirements

    Application of neuroergonomics in the industrial design of mining equipment.

    Get PDF
    Neuroergonomics is an interdisciplinary field merging neuroscience and ergonomics to optimize performance. In order to design an optimal user interface, we must understand the cognitive processing involved. Traditional methodology incorporates self-assessment from the user. This dissertation examines the use of neurophysiological techniques in quantifying the cognitive processing involved in allocating cognitive resources. Attentional resources, cognitive processing, memory and visual scanning are examined to test the ecological validity of theoretical laboratory settings and how they translate to real life settings. By incorporating a non-invasive measurement technique, such as the quantitative electroencephalogram (QEEG), we are able to examine connectivity patterns in the brain during operation and discern whether or not a user has obtained expert status. Understanding the activation patterns during each phase of design will allow us to gauge whether our design has balanced the cognitive requirements of the user.Doctor of Philosophy (PhD) in Natural Resources Engineerin

    Towards continuous and real-time attention monitoring at work: reaction time versus brain response

    Get PDF
    Continuous and objective measurement of the user attention state still represents a major challenge in the ergonomics research. Recently available wearable electroencephalography (EEG) opens new opportunities for objective and continuous evaluation of operators' attention, which may provide a new paradigm in ergonomics. In this study, wearable EEG was recorded during simulated assembly operation, with the aim to analyse P300 event-related potential component, which provides reliable information on attention processing. In parallel, reaction times (RTs) were recorded and the correlation between these two attention-related modalities was investigated. Negative correlation between P300 amplitudes and RTs has been observed on the group level (p lt .001). However, on the individual level, the obtained correlations were not consistent. As a result, we propose the P300 amplitude for accurate attention monitoring in ergonomics research. On the other hand, no significant correlation between RTs and P300 latency was found on group, neither on individual level. Practitioner Summary: Ergonomic studies of assembly operations mainly investigated physical aspects, while mental states of the assemblers were not sufficiently addressed. Presented study aims at attention tracking, using realistic workplace replica. It is shown that drops in attention could be successfully traced only by direct brainwave observation, using wireless electroencephalographic measurements.This is the peer-reviewed version of the article: Mijović, P.; Ković, V.; De Vos, M.; Macuzić, I.; Todorović, P.; Jeremić, B.; Gligorijević, I. Towards Continuous and Real-Time Attention Monitoring at Work: Reaction Time versus Brain Response. Ergonomics 2017, 60 (2), 241–254. [https://doi.org/10.1080/00140139.2016.1142121

    Draining your Brain: The Effects of Four Fatiguing Task Domains on Executive Function and Prefrontal Cortex

    Get PDF
    The present study empirically examined the effects of four fatiguing task domains on executive function through participants\u27 reaction time, accuracy, and brain activity in prefrontal cortex (PFC). Forty college-age participants were collected (16 males and 24 females), of which eleven were examined using a functional near-infrared spectroscopy (fNIRS) imaging system. The present study used a 4Ă—2 mixed factorial design consisting of fatiguing task (arm contractions task, vigilance task, distance-manipulated Fitts\u27 task, size-manipulated Fitts\u27 task) as a between-participant variable and n-back testing period (pre-test versus post-test 3-back task) as a within-participant variable. Results indicated significant increases in 3-back performance after the fatiguing tasks, and significant increases in 3-back compensatory brain activity in dorsomedial and dorsolateral prefrontal cortex (dmPFC and dlPFC) after the fatiguing tasks. Furthermore, results showed an interaction between 3-back target type and fatiguing task on standardized changes in reaction time, and an interaction between fatiguing task and testing period on brain activity in dmPFC. Theoretical and practical implications are discussed. Findings from this study may be used to help draw the boundaries on different domains of fatigue and their effects on the brain and body

    The Berlin Brain-Computer Interface: Progress Beyond Communication and Control

    Get PDF
    The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.EC/FP7/611570/EU/Symbiotic Mind Computer Interaction for Information Seeking/MindSeeEC/FP7/625991/EU/Hyperscanning 2.0 Analyses of Multimodal Neuroimaging Data: Concept, Methods and Applications/HYPERSCANNING 2.0DFG, 103586207, GRK 1589: Verarbeitung sensorischer Informationen in neuronalen Systeme

    Opportunities for using eye tracking technology in manufacturing and logistics: Systematic literature review and research agenda

    Get PDF
    Workers play essential roles in manufacturing and logistics. Releasing workers from routine tasks and enabling them to focus on creative, value-adding activities can enhance their performance and wellbeing, and it is also key to the successful implementation of Industry 4.0. One technology that can help identify patterns of worker-system interaction is Eye Tracking (ET), which is a non-intrusive technology for measuring human eye movements. ET can provide moment-by-moment insights into the cognitive state of the subject during task execution, which can improve our understanding of how humans behave and make decisions within complex systems. It also enables explorations of the subject’s interaction mode with the working environment. Earlier research has investigated the use of ET in manufacturing and logistics, but the literature is fragmented and has not yet been discussed in a literature review yet. This article therefore conducts a systematic literature review to explore the applications of ET, summarise its benefits, and outline future research opportunities of using ET in manufacturing and logistics. We first propose a conceptual framework to guide our study and then conduct a systematic literature search in scholarly databases, obtaining 71 relevant papers. Building on the proposed framework, we systematically review the use of ET and categorize the identified papers according to their application in manufacturing (product development, production, quality inspection) and logistics. Our results reveal that ET has several use cases in the manufacturing sector, but that its application in logistics has not been studied extensively so far. We summarize the benefits of using ET in terms of process performance, human performance, and work environment and safety, and also discuss the methodological characteristics of the ET literature as well as typical ET measures used. We conclude by illustrating future avenues for ET research in manufacturing and logistics

    Predicting Inattentional Blindness with Pupillary Response in a Simulated Flight Task

    Get PDF
    Inattentional blindness (IB) is the failure of observers to notice the presence of a clearly viewable but unexpected visual event when attentional resources are diverted elsewhere. Knowing when an operator is unable to respond or detect an unexpected event may help improve safety during task performance. Unfortunately, it is difficult to predict when such failures might occur. The current study was a secondary data analysis of data collected in the Human and Autonomous Vehicle Systems Laboratory at NASA Langley Research Center. Specifically, 60 subjects (29 male, with normal or corrected-to-normal vision, mean age of 34.5 years (SD = 13.3) were randomly assigned to one of three automation conditions (full automation, partial automation, and full manual) and took part in a simulated flight landing task. The dependent variable was the detection/non-detection of an IB occurrence (a truck on the landing runway). Scores on the NASA-TLX workload rating scale varied significantly by automation condition. The full automation condition reported the lowest subjective task load followed by partial automation and then manual condition. IB detection varied significantly across automation condition. The moderate workload condition of partial automation exhibited the lowest likelihood of IB occurrence. The low workload full automation condition did not differ significantly from the manual condition. Subjects who reported higher task demand had increased pupil dilation and subjects with larger pupil dilation were more likely to detect the runway incursion. These results show eye tracking may be used to identify periods of reduced unexpected visual stimulus detection for possible real-time IB mitigation
    corecore