7,648 research outputs found

    Partial Evaluation for Java Malware Detection

    Get PDF
    The fact that Java is platform independent gives hackers the opportunity to write exploits that can target users on any platform, which has a JVM implementation. Metasploit is a well-known source of Java exploits and to circumvent detection by Anti Virus (AV) software, obfuscation techniques are routinely applied to make an exploit more difficult to recognise. Popular obfuscation techniques for Java include string obfuscation and applying reflection to hide method calls; two techniques that can either be used together or independently. This paper shows how to apply partial evaluation to remove these obfuscations and thereby improve AV matching. The paper presents a partial evaluator for Jimple, which is a typed three-address code suitable for optimisation and program analysis, and also demonstrates how the residual Jimple code, when transformed back into Java, improves the detection rates of a number of commercial AV products

    Time-Space Efficient Regression Testing for Configurable Systems

    Full text link
    Configurable systems are those that can be adapted from a set of options. They are prevalent and testing them is important and challenging. Existing approaches for testing configurable systems are either unsound (i.e., they can miss fault-revealing configurations) or do not scale. This paper proposes EvoSPLat, a regression testing technique for configurable systems. EvoSPLat builds on our previously-developed technique, SPLat, which explores all dynamically reachable configurations from a test. EvoSPLat is tuned for two scenarios of use in regression testing: Regression Configuration Selection (RCS) and Regression Test Selection (RTS). EvoSPLat for RCS prunes configurations (not tests) that are not impacted by changes whereas EvoSPLat for RTS prunes tests (not configurations) which are not impacted by changes. Handling both scenarios in the context of evolution is important. Experimental results show that EvoSPLat is promising. We observed a substantial reduction in time (22%) and in the number of configurations (45%) for configurable Java programs. In a case study on a large real-world configurable system (GCC), EvoSPLat reduced 35% of the running time. Comparing EvoSPLat with sampling techniques, 2-wise was the most efficient technique, but it missed two bugs whereas EvoSPLat detected all bugs four times faster than 6-wise, on average.Comment: 14 page

    Instruction fetch architectures and code layout optimizations

    Get PDF
    The design of higher performance processors has been following two major trends: increasing the pipeline depth to allow faster clock rates, and widening the pipeline to allow parallel execution of more instructions. Designing a higher performance processor implies balancing all the pipeline stages to ensure that overall performance is not dominated by any of them. This means that a faster execution engine also requires a faster fetch engine, to ensure that it is possible to read and decode enough instructions to keep the pipeline full and the functional units busy. This paper explores the challenges faced by the instruction fetch stage for a variety of processor designs, from early pipelined processors, to the more aggressive wide issue superscalars. We describe the different fetch engines proposed in the literature, the performance issues involved, and some of the proposed improvements. We also show how compiler techniques that optimize the layout of the code in memory can be used to improve the fetch performance of the different engines described Overall, we show how instruction fetch has evolved from fetching one instruction every few cycles, to fetching one instruction per cycle, to fetching a full basic block per cycle, to several basic blocks per cycle: the evolution of the mechanism surrounding the instruction cache, and the different compiler optimizations used to better employ these mechanisms.Peer ReviewedPostprint (published version

    TABARNAC: Visualizing and Resolving Memory Access Issues on NUMA Architectures

    Get PDF
    International audienceIn modern parallel architectures, memory accesses represent a common bottleneck. Thus, optimizing the way applications access the memory is an important way to improve performance and energy consumption. Memory accesses are even more important with NUMA machines, as the access time to data depends on its location in the memory. Many efforts were made to develop adaptive tools to improve memory accesses at the runtime by optimizing the mapping of data and threads to NUMA nodes. However, theses tools are not able to change the memory access pattern of the original application, therefore a code written without considering memory performance might not benefit from them. Moreover, automatic mapping tools take time to converge towards the best mapping, losing optimization opportunities. A deeper understanding of the memory behavior can help optimizing it, removing the need for runtime analysis. In this paper, we present TABARNAC , a tool for analyzing the memory behavior of parallel applications with a focus on NUMA architectures. TABARNAC provides a new visualization of the memory access behavior, focusing on the distribution of accesses by thread and by structure. Such visualization allows the developer to easily understand why performance issues occur and how to fix them. Using TABARNAC , we explain why some applications do not benefit from data and thread mapping. Moreover, we propose several code modifications to improve the memory access behavior of several parallel applications. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credi
    • …
    corecore